簡易檢索 / 詳目顯示

研究生: 張又升
Yu-Sheng Chang
論文名稱: 連續消除位元翻轉之極化碼解碼器硬體設計與實現
The Design and Implementation of Polar Code SCF Decoder
指導教授: 王煥宗
Huan-Chun Wang
口試委員: 王煥宗
Huan-Chun Wang
王瑞堂
Jui-Tang Wang
林敬舜
Ching-Shun Lin
劉建成
Jian-Cheng Liu
洪啟峻
Qi-Jun Hong
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 72
中文關鍵詞: 極化碼連續消除解碼演算法半平行化FPGA位元翻轉循環冗於校驗
外文關鍵詞: Polar Code, Successive Cancellation Decoder, Semi-Parallel, FPGA, Bit-Flip, Cyclic Redundancy Check
相關次數: 點閱:331下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文為針對極化碼(Polar Code)之連續消除(Successive Cancellation)解碼器,在設計上以減少硬體使用率為目標,所提出的解碼器採用半平行化(Semi-Parallel)的硬體架構,藉由重複利用計算單元以降低硬體使用率,且透過分析比較半平行化的數目與解碼周期的分析,選擇出較符合效益的方式。另外在解碼後透過循環冗餘校驗(Cyclic Redundancy Check)與排序電路(Sorting),將較容易發生錯誤的位置進行位元翻轉(Bit-Flip),再重新進行解碼以降低解碼的錯誤率。本論文使用 MATLAB 進行演算法的開發與驗證模擬,硬體部分則使用Verilog 進行 RTL code 的撰寫,將其透過型號 Virtex7 VC707 的 FPGA 開發板進行驗證,最後將此電路透過 TSMC 40nm CMOS 製程進行硬體實現。


This dissertation proposes the design and implementation of Successive Cancellation Polar Code decoder to reduce hardware resource, which adopts a SemiParallel hardware architecture. By reusing compute units to reduce hardware resource, while analyzing the number of Semi-Parallel versus decode cycle, choose the most efficient way to design Semi-Parallel hardware architecture. In addition, after decoding, through Cyclic Redundancy Check and Sorting circuit, flip the highest error probability location and re-decode (Bit-Flip) to reduce decoding error rate.
The software simulation environment in this dissertation is MATLAB, the RTL code uses Verilog hardware description language while the FPGA verification environment is Virtex-7 VC707. Finally, this circuit is implemented in TSMC 40nm CMOS process technology.

圖目錄 v 表目錄 vii 第1章 緒論 1 1.1. 研究背景 1 1.2. 研究目的 2 1.3. 論文架構 2 第2章 極化碼 3 2.1. 極化碼介紹 3 2.1.1. 通道極化 3 2.1.2. 通道組合 4 2.1.3. 通道分裂 8 2.2. 通道極化選擇 11 2.3. 極化碼編碼方式 16 2.4. 連續消除位元翻轉解碼 17 2.4.1. SC解碼方式 18 2.4.2. 節點解碼之函式運算 22 2.4.3. Critical Set之建構 23 第3章 演算法模擬與驗證 25 3.1. 環境設定 25 3.2. 軟體驗證流程 29 3.3. 模擬解碼效能 30 第4章 解碼器硬體架構與FPGA模擬 33 4.1. 半平行化解碼器之週期分析 33 4.2. LLR位元寬度選擇 34 4.3. 硬體電路架構圖 35 4.3.1. 連續消除位元翻轉解碼器 35 4.3.2. 處理單元 38 4.3.3. 部份和產生器 40 4.3.4. 排序單元 41 4.3.5. 循環冗餘校驗 43 4.4. FPGA環境設定 44 4.5. FPGA解碼效能 46 第5章 晶片設計流程與參數選擇 47 5.1. 晶片設計流程 47 5.2. I/O Pad的選擇 51 5.3.晶片佈局效能比較 53 第6章 結論與未來展望 57 參考文獻 58 附錄 中英名稱與縮寫對照表 61

[1] E. Arikan, "Channel polarization: A method for constructing capacity-achieving codes," 2008 IEEE International Symposium on Information Theory, Toronto, ON, 2008, pp. 1173-1177 Jul. 2008.
[2] J. Guo, M. Qin, A. Guillén i Fàbregas and P. H. Siegel, "Enhanced belief propagation decoding of polar codes through concatenation," 2014 IEEE International Symposium on Information Theory, 2014, pp. 2987-2991, doi: 10.1109/ISIT.2014.6875382.
[3] I. Tal and A. Vardy, "How to Construct Polar Codes," in IEEE Transactions on Information Theory, vol. 59, no. 10, pp. 6562-6582, Oct. 2013, doi: 10.1109/TIT.2013.2272694.
[4] P. Trifonov, "Efficient Design and Decoding of Polar Codes," in IEEE Transactions on Communications, vol. 60, no. 11, pp. 3221-3227, November 2012, doi: 10.1109/TCOMM.2012.081512.110872.
[5] H. Zhang et al., "Parity-Check Polar Coding for 5G and Beyond," 2018 IEEE International Conference on Communications (ICC), 2018, pp. 1-7, doi: 10.1109/ICC.2018.8422462.
[6] G. He et al., "Beta-Expansion: A Theoretical Framework for Fast and Recursive Construction of Polar Codes," GLOBECOM 2017 - 2017 IEEE Global Communications Conference, 2017, pp. 1-6, doi: 10.1109/GLOCOM.2017.8254146.
[7] Z. Zhang, K. Qin, L. Zhang, H. Zhang and G. T. Chen, "Progressive Bit-Flipping Decoding of Polar Codes over Layered Critical Sets," GLOBECOM 2017 - 2017 IEEE Global Communications Conference, 2017, pp. 1-6, doi: 10.1109/GLOCOM.2017.8254149. P. Trifonov, "Efficient Design and Decoding of Polar Codes," IEEE Transactions on Communications, vol. 60, no. 11, pp. 3221-3227, November 2012.
[8] A. A. Hasan and I. D. Marsland, "SC of polar codes based normalized MS algorithm," 2017 8th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), 2017, pp. 111-116, doi: 10.1109/IEMCON.2017.8117164. G. He et al., "Beta-Expansion: A Theoretical Framework for Fast and Recursive Construction of Polar Codes," GLOBECOM 2017 - 2017 IEEE Global Communications Conference, Singapore, 2017, pp. 1-6.
[9] O. Afisiadis, A. Balatsoukas-Stimming and A. Burg, "A low-complexity improved successive cancellation decoder for polar codes," 2014 48th Asilomar Conference on Signals, Systems and Computers, 2014, pp. 2116-2120, doi: 10.1109/ACSSC.2014.7094848. 3GPP R1-1714179” Rate Matching Scheme for Polar Codes,” Samsung. Aug. 2017.
[10] L. Chandesris, V. Savin and D. Declercq, "An Improved SCFlip Decoder for Polar Codes," 2016 IEEE Global Communications Conference (GLOBECOM), 2016, pp. 1-6, doi: 10.1109/GLOCOM.2016.7841594. 3GPP R1-1712259 “Channel Coding for URLLC,” Tsofun Algorithm. Aug. 2017.
[11] C. Leroux, A. J. Raymond, G. Sarkis and W. J. Gross, "A Semi-Parallel Successive-Cancellation Decoder for Polar Codes," in IEEE Transactions on Signal Processing, vol. 61, no. 2, pp. 289-299, Jan.15, 2013, doi: 10.1109/TSP.2012.2223693.
[12] C. Zhang, B. Yuan and K. K. Parhi, "Reduced-latency SC polar decoder architectures," 2012 IEEE International Conference on Communications (ICC), 2012, pp. 3471-3475, doi: 10.1109/ICC.2012.6364209.
[13] B. Yuan and K. K. Parhi, "Low-Latency Successive-Cancellation Polar Decoder Architectures Using 2-Bit Decoding," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 61, no. 4, pp. 1241-1254, April 2014, doi: 10.1109/TCSI.2013.2283779.
[14] J. Dai, K. Niu, Z. Si, C. Dong and J. Lin, "Does Gaussian Approximation Work Well for the Long-Length Polar Code Construction?," in IEEE Access, vol. 5, pp. 7950-7963, 2017, doi: 10.1109/ACCESS.2017.2692241.
[15] C. Condo, M. Martina, G. Piccinini and G. Masera, "Variable Parallelism Cyclic Redundancy Check Circuit for 3GPP-LTE/LTE-Advanced," in IEEE Signal Processing Letters, vol. 21, no. 11, pp. 1380-1384, Nov. 2014, doi: 10.1109/LSP.2014.2334393.
[16] S. Park, S. Kim, T. Shin and J. Kim, "Design and Analysis of An Active Simultaneously Switching Output Noise Reduction Scheme," 2019 Joint International Symposium on Electromagnetic Compatibility, Sapporo and Asia-Pacific International Symposium on Electromagnetic Compatibility (EMC Sapporo/APEMC), 2019, pp. 222-225, doi: 10.23919/EMCTokyo.2019.8893954.
[17] P. Giard et al., "PolarBear: A 28-nm FD-SOI ASIC for Decoding of Polar Codes," in IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 7, no. 4, pp. 616-629, Dec. 2017, doi: 10.1109/JETCAS.2017.2745704.
[18] O. Dizdar and E. Arıkan, "A High-Throughput Energy-Efficient Implementation of Successive Cancellation Decoder for Polar Codes Using Combinational Logic," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 63, no. 3, pp. 436-447, March 2016, doi: 10.1109/TCSI.2016.2525020.
[19] C. Wong and H. Chang, "Reconfigurable Turbo Decoder With Parallel Architecture for 3GPP LTE System," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 57, no. 7, pp. 566-570, July 2010, doi: 10.1109/TCSII.2010.2048481.

無法下載圖示 全文公開日期 2024/07/26 (校內網路)
全文公開日期 2024/07/26 (校外網路)
全文公開日期 2024/07/26 (國家圖書館:臺灣博碩士論文系統)
QR CODE