簡易檢索 / 詳目顯示

研究生: 黃俊凱
Jyun-Kai Huang
論文名稱: 5.8 GHz CMOS 非接觸式生理訊號雷達感測晶片研製
Development of 5.8 GHz Radar Sensor Chip in 0.18-um CMOS for Non-Contact Vital Sign Detection
指導教授: 曾昭雄
Chao-Hsiung Tseng
口試委員: 瞿大雄
Tah-Hsiung Chu
洪子聖
Tzyy-Sheng Horng
張嘉展
Chia-Chan Chang
林益如
Yi-Ru Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 48
中文關鍵詞: 直接正交轉換雷達感測晶片
外文關鍵詞: the quadrature direct conversion, radar sensor chip
相關次數: 點閱:374下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文係使用TSMC 0.18 μmCMOS 製程研製兩型應用於5.8GHz 非接觸式生理訊號雷達感測晶片,一型雷達感測晶片不包含低雜訊放大器,另一型則將雷達系統整合於單一晶片中,且該晶片包含被動式雙平衡混頻器、線性功率放大器、低雜訊放大器、壓控振盪器,及射頻被動電路等關鍵零組件。此外,為克服雷達偵測零點問題,本論文採用直接正交轉換電路架構實現雷達感測晶片。
本論文之晶片使用鎊線封裝於印刷電路板上,透過連接收發射天線與基頻放大器,於成人受測者前50 公分處進行量測驗證,所測得之每分鐘心跳次數與市售醫療及血氧濃度計量測結果吻合,驗證雷達系統之有效性。


This thesis presents two types of 5.8-GHz radar sensor chips for non-contact
vital sign detection. The sensor chip is designed and fabricated in TSMC
0.18 μmCMOS 1P6M process. In order to overcome the null-point detection, the
system configuration of the quadrature direct conversion is adopted to implement this radar chip. The first radar chip does not include an on-chip low-noise amplifier. For the second radar chip, all the active and passive components of the radar system are fully integrated in a single CMOS chip. With packaging on the printed-circuit board and connecting transmitting and receiving antennas, two radar sensor chips have been successfully demonstrated to detect the respiration and heart beat rates of a human
adult at about 50 cm measurement range. The measured heartbeats per minute are in a good agreement with the results acquired by the finger pulse oximeter. The measured results in this thesis demonstrate the effectiveness of the developed radar chips.

摘要................................................................................................................................i Abstract..........................................................................................................................ii 目錄...............................................................................................................................iii 第一章 緒論..................................................................................................................1 1-1 研究動機與目的..............................................................................................1 1-2 非接觸式生理訊號雷達感測原理..................................................................2 1-3 非接觸式生理訊號雷達晶片系統架構..........................................................5 1-4 章節說明..........................................................................................................6 第二章 CMOS 雷達感測晶片之關鍵電路..................................................................7 2-1 平衡-不平衡轉換器與90 度功率分配器設計..............................................7 2-2 被動式CMOS 雙平衡混頻器設計與量測..................................................11 2-3 線性功率放大器設計與量測......................................................................17 2-4 壓控振盪器與低雜訊放大器設計...............................................................23 2-4-1 壓控振盪器設計...............................................................................23 2-4-2 低雜訊放大器設計...........................................................................26 第三章 CMOS 非接觸式生理訊號雷達感測系統晶片設計與驗證........................31 3-1 非接觸式生理訊號感測系統晶片研製......................................................31 3-1-1 不含低雜訊放大器之雷達感測晶片(晶片一) ................................31 3-1-2 雷達感測晶片(晶片二) ....................................................................35 3-2 非接觸式生理訊號感測雷達模組驗證......................................................38 3-2-1 天線及基頻電路設計與研製.............................................................38 3-2-2 雷達感測模組量測與驗證.................................................................41 第四章 結論................................................................................................................45 參考文獻 ....................................................................................................................48

[1] Respiration Effort [online] Available: http://www.everychina.com/m-vital-signsmonitor
[2] A. D. Droitcour, O. Boric-Lubecke, V. M. Lubecke, J. Lin, and G. T. A. Kovacs,
“Range correlation and I/Q performance benefits in single-chip silicon Dopper
radars for noncontact cardiopulmonary monitoring,” IEEE Trans. Microw.
Theory Tech., vol. 52, no. 3, pp. 838-848, Mar. 2004.
[3] C. Li, Y. Xiao, and J. Lin, “A 5GHz double-sideband radar sensor chip in
0.18 μm CMOS for non-contact vital sign detection,” IEEE Micro. Wireless
Compon. Lett., vol. 18, pp. 494-496, no.7, Jul. 2008.
[4] C. Li, X. Yu, C.-M. Lee, D. Li, L. Ran, and J. Lin, “High-sensitivity
software-configurable 5.8-GHz radar sensor receiver chip in 0.13- μmCMOS for
noncontact vital sign detection,” IEEE Trans. Microw. Theory Tech., vol. 58, no.
5, pp. 1410-1419, May 2010.
[5] T.-Y. Kao, Y. Yan, T.-M. Shen, A Y.-K Chen, and J. Lin, “Design and analysis of
a 60-GHz CMOS Doppler micro-radar system-in-package for vital-sign and
vibration detection,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 4, pp.
1649-1659, Apr. 2013.
[6] K. M. Chen, Y. Huang, J. Shang, and A. Norman, “Microwave life-detection
systems for searching human subjects under earthquake rubble or behind
barrier,” IEEE Trans. Biomed. Eng., vol. 27, pp. 105–114, Jan. 2000.
[7] Y. Xiao, J. Lin, O. Boric-Lubecke, and V. M. Lubecke, “Frequency-tuning
technique for remote detection of heartbeat and respiration using low-power
double-sideband transmission in the Ka-band,” IEEE Trans. Microw. Theory
Tech., vol. 54, no. 5, pp. 2023-2032, May. 2006.
[8] C. Li, V. M. Lubecke, O. Boric-Lubecke, J. Lin, “A review on recent advances in
doppler radar sensors for noncontact healthcare monitoring,” IEEE Trans.
Microw. Theory Tech., vol. 61, no. 5, pp. 2046-2060, 2013.
[9] C.-H. Tseng and C.-L. Chang, “Microwave push-pull power amplifier using
metamaterial-based balun,” in Proc. 20th Asia-Pacific Microwave Conf., Dec.
2008, pp. 1-4.
[10] H.-K. Chiou and J.-Y. Lin, “Symmetric offset stack balun in standard 0.13-μm
CMOS technology for three broadband and low-loss balanced passive mixer
design,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 6, pp. 1529–1538, Jun.
2011
[11] W. Sen and C.-H. Lee, “Low-phase error and high isolation CMOS active
balun,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun., 2014, pp. 1-4.
[12] S.-C. Tseng, C.-C. Meng, C.-H. Change, C.-K. Wu and G.-W. Hung, “Monolithicbroadband Gilbert micromixer with an integrated marchand Balun using standard silicon IC process,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 12, pp.
4362-4371, Dec. 2006.
[13] P. Andreani and A. Fard, “A 2.3GHz LC-tank CMOS VCO with optimal phase
noise performance,” Proc. Int. Solid-State Circuits Conf., pp. 691-700, 2006
[14] J.-C. Wu, T.-Y. Chin, S.-F. Chang, and C.-C. Chang, “2.45-GHz CMOS
reflection-type phase-shifter MMICs with minimal loss variation over quadrants of phase-shift range,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 10, pp.2180-2189, Oct. 2008.
[15] B. Razavi, RF Microelectronics, Upper Saddle River, NJ, USA: Prentice-Hall,
1998.
[16] 張勝富、張嘉展,無線通訊射頻晶片模組設計射頻晶片篇,全華,2015 年。
[17] T. Yao, M. Q. Gordon, K. K. W. Tang, K. H. K. Yau, M. T. Yang, P. Schvan, and
S. P. Voinigescu., "Algorithmic design of CMOS LNAs and PAs for 60-GHz
radio," IEEE J. Solid-State Circuits, vol. 42, no. 5, pp. 1044-1057, Jul. 2007.
[18] 邱煥凱、林貴城,ADS 應用於射頻功率放大器設計與模擬,國立清華大學
出版社,2014 年
[19] P. Hsieh, J. Maxey and C. K. Yang, “Minimizing the supply sensitivity of CMOS
ring oscillators by jointly biasing the supply and control voltage,” in Proc.
Custom Integr. Circuit Conf. 2008.
[20] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill
Companies, Inc., 2001.
[21] Texas Instruments, Low Dropout Regulator LM1117 Data Sheet, Texas
I n s t r u m e n t s I n c . , T e x a s , U S A [ o n l i n e ] Av a i l a b l e :
http://www.ti.com/lit/ds/symlink/lm1117-n.pdf
[22] C. Li and J. Lin, “Random body movement cancellation in Doppler radar vital
sign detection,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 12, pp.
3143-3152, Dec. 2008.

QR CODE