簡易檢索 / 詳目顯示

研究生: 張淑楣
Shu-Mei Zhang
論文名稱: 探討白蛋白微氣泡對比劑包覆順式-二氯二氨合鉑結合超音波於下咽癌治療效率之研究
Estimating the treatment efficacy of ultrasound mediated cisplatin loaded microbubbles cavitation in hypopharyngeal cancer
指導教授: 廖愛禾
Ai-Ho Liao
口試委員: 王智弘
江建平
沈哲州
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 92
中文關鍵詞: 微氣泡對比劑超音波Cisplatin下咽癌穴蝕效應
外文關鍵詞: microbubble, ultrasound, cisplatin, hypopharyngeal cancer, cavitation
相關次數: 點閱:331下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

順式-二氨二氯合鉑 (cis-Diamineplatinu (Ⅱ) dichloride, CDDP) 為目前最常見的化學治療藥物,主要被應用在治療如頭頸癌、泌尿道癌以及肺癌等其他類型癌症。雖然 CDDP 在臨床的運用上十分廣泛,然而其本身的副作用反造成臨床醫師在治療病患上面臨諸多困難,最為顯著已知副作用包括:耳毒性、腎毒性、神經毒性以及噁心嘔吐等。在本研究中主要,設計可包覆 CDDP 於白蛋白超音波微氣泡對比劑 (Microbubbles, MBs),一種穩定且可承載足夠劑量抗癌藥物之新型白蛋白超音波微氣泡對比劑,並結合超音波產生的穴蝕效應打開細胞膜通透度,增加腫瘤內局部的藥物累積濃度,抑制下咽癌癌細胞生長,減少周圍組織的傷害及副作用。
CDDP-MBs 透過動態光散射粒徑分析儀量測粒徑及庫爾特計數器分析濃度等實驗,並分別進行細胞實驗 (n=5) 與動物活體實驗 (n=7) 其實驗組別分為 (1)控制組 (C);(2) 單純白蛋白微氣泡對比劑 (MBs);(3) CDDP溶液 (CDDP);(4) CDDP溶液混合MBs (CDDP+MBs);(5) CDDP包覆於MBs (CDDP-MBs);(6) CDDP混合 MBs 結合超音波 (CDDP+MBs+US); (7) CDDP 包覆於 MBs 結合超音波 (CDDP-MBs+US)。
本研究以不同濃度之白蛋白溶液與 1.2 mg/ml CDDP 所配製而成的 CDDP-MBs,其粒徑大小隨白蛋白濃度132 mg/ml、140 mg/ml、150 mg/ml的增加而改變,故粒徑大小依序為 1.70 ± 0.73、2.42 ± 0.61、2.44 ± 4.49 µm;其中以白蛋白濃度 140 mg/ml包覆 CDDP 所製成的微氣泡對比劑數目含量最高;包覆效率達 10.09 ±
0.23 %;在體外試驗中,未經超音波施打前,CDDP-MBs 組對下咽癌細胞毒性效果不佳,但經超音波施打後整體毒殺能力大幅提升,平均細胞存活率下降 26 % (p<0.001);在動物試驗中,可觀察到 CDDP-MBs+US 與 CDDP 治療趨勢結果相似,但 MBs 包覆 CDDP 時可使其副作用減低,從腎臟病理切片結果觀察到 CDDO+MBs+US 比CDDP-MBs+US有較嚴重的損傷,故綜合以上 CDDP-MBs 其治療的效果能降低 CDDP 所引起的副作用。


Cisplatin (cis-Diamineplatinu (Ⅱ) dichloride, CDDP) is one of the most frequently used agents in the treatment a variety of tumor, particularity head and neck, genitourinary, and lung cancer. Although CDDP was widely used in clinical, the side effects (Ototoxicity, Nephrotoxicity, Neurotoxicity, Nausea and Vomiting) limit the dose of cisplatin that can be safely administered.
The aim of this study is to establish a new, stable, high drug-loading capacity albumin-shelled microbubbles (MBs) combined with ultrasound (US) to enhance hypopharyngeal cancer treatment. The CDDP-MBs combined with ultrasound can increased the capillary permeability through cavitation mechanism. It increased the local concentrations of tumor site, inhibited the hypopharyngeal cancer cell growth without causing surrounding normal tissues damage and reduced the side effects.
The size distribution and concentration of the CDDP-loaded MBs in suspension were measured by DLS and Coulter Counter respectively. The in vitro (n=6) and in vivo (n=7) experimental parameters will be divided into eight groups: (1) no treatment (Control); (2) microbubbles (MBs) alone; (3) cisplatin solution (CDDP) alone; (4) CDDP solution mixed with MBs (CDDP+MBs); (5) CDDP-loaded MBs (CDDP-MBs) alone; (6) US combined with penetrating CDDP (CDDP+US); (7) US combined with MBs and penetrating CDDP (CDDP+MBs+US); (8) US combined with CDDP-MBs (CDDP-MBs+US).
In our research, the CDDP-MBs prepared with different concentrations of albumin solution (132 mg/ml, 140 mg/ml and 150 mg/ml) and 1.2 mg/ml CDDP solution. The mean diameters of CDDP-MBs with various concentrations of albumin were 1.70 ± 0.73, 2.42 ± 0.61, 2.44 ± 4.49 µm respectively. The maximum loading efficiency of CDDP on MBs (with 140 mg/ml albumin : 1.2 mg/ml CDDP) was 10.09 ± 0.23 %. In the in vitro study, CDDP-MBs can increase 26 % cell toxicity after ultrasound irradiation (p<0.001). In small animal treatment, the treatment efficacies in CDDP-MBs+US and CDDP groups were similar before 17 days. Instead of CDDP, it can be expected that CDDP-loaded microbubbles reduces the side effect more significant.

中文摘要 i ABSTRACT ii 誌謝 iii 目錄 vi 圖目錄 x 表目錄 xii 第1章 緒論 1 1.1 癌症 1 1.1.1 頭頸癌 1 1.1.2 下咽癌 2 1.2 癌症的治療發展 4 1.2.1 手術 4 1.2.2 放射線 5 1.2.3 化學治療 5 1.2.4 標靶治療 5 1.2.5 超音波 6 1.3 鉑金類藥物簡介 7 1.3.1 順式-二氯二氨合鉑發展 7 1.3.2 藥理作用機制 8 1.3.3 副作用 9 1.4 人類血清白蛋白 10 1.4.1 人類血清白蛋白作為載體相關之研究 11 1.5 人類血清白蛋白與順式-二氯二氨合鉑 (Albumin-CDDP Complex) 12 1.5.1 結合機制 13 1.5.2 臨床藥理應用 13 1.6 微氣泡對比劑 14 1.6.1 超音波微氣泡對比劑 14 1.7 超音波結合微氣泡對比劑增加局部治療 16 1.7.1 超音波簡介 16 1.7.2 藥物傳輸機制 17 1.7.3 穴蝕效應 19 1.8 研究動機 22 第2章 材料與方法 23 2.1 研究架構 23 2.2 藥品與設備 24 2.2.1 藥品 24 2.2.2 設備 24 2.3 無菌人類血清白蛋白包覆順式-二氯二氨合鉑之製作 26 2.3.1 白蛋白微氣泡對比劑之物理性質分析 26 2.3.1.1HPLC定性分析 26 2.3.1.2光學定性分析 29 2.3.1.3粒徑分析 29 2.3.1.4濃度分析 30 2.3.1.5雙束型聚焦離子束顯微鏡拍攝 31 2.4 白蛋白微氣泡對比劑之白蛋白含量測量 31 2.5 白蛋白球殼包覆藥物之定量分析 31 2.6 高頻超音波動物影像系統模擬打破效率 32 2.6.1 24 well內之打破效率 32 2.6.2 仿體內模擬動物體內之打破效率 33 2.7 體外細胞毒殺實驗 35 2.7.1 細胞株及繼代培養 35 2.7.2 細胞計數 35 2.7.3 培養液配製 36 2.7.4 凍細胞及解凍細胞 36 2.7.5 細胞實驗設計 37 2.4.5.1 細胞存活率分析 37 2.4.5.2 半抑制濃度 38 2.4.5.3 細胞治療分組 38 2.4.5.4 實驗方法 39 2.8 體內異種移殖抗腫瘤實驗 41 2.8.1 動物品系及飼養條件 41 2.8.2 異種移殖 41 2.8.3 抗腫瘤實驗分組與療程 41 2.8.4 3D非侵入式活體分子影像系統 44 2.8.5 採血及病理組織切片 44 2.9 統計分析 44 第3章 實驗結果 45 3.1 微氣泡物理性質 45 3.1.1 無菌微氣泡對比劑 45 3.1.2 HPLC 定性分析 45 3.1.3 濃度及粒徑分析 48 3.1.4 ICP-MS定量分析 50 3.1.5 光學定性影像 51 3.1.6 雙束型聚焦離子束顯微鏡表面觀察 52 3.2 高頻超音波影像分析超音波能量打破效率之參數評估 52 3.2.1 24 well內模擬體外實驗 52 3.2.2 細胞體外試驗於不同超音波對於細胞的影響 54 3.2.3 仿體模擬體內實驗 54 3.3 體外細胞毒殺試驗 56 3.3.1 CDDP針對 FaDu Cell IC50 測量結果 56 3.3.2 細胞毒性分析 57 3.3.3 細胞外觀觀察 59 3.4 體內異種移植抗腫瘤實驗 60 3.4.1 活體內冷光影像及腫瘤生長趨勢之結果 60 3.4.2 組織切片 62 第4章 討論 64 第5章 結論 69 參考文獻 70

[1] A. Sudhakar, "History of Cancer, Ancient and Modern Treatment Methods," J Cancer Sci Ther, vol. 1, no. 2, pp. 1-4, 2009.
[2] N. C. Institute. (2015). What Is Cancer. Available: https://www.cancer.gov/about-cancer/understanding/what-is-cancer
[3] N. C. Institute. (2000). Head and Neck Cancers. Available: https://www.cancer.gov/types/head-and-neck/head-neck-fact-sheet
[4] Cancer.Net, "Laryngeal and Hypopharyngeal Cancer-Introduction," 2005.
[5] G. B. F. MURA, "Surgical treatment of hypopharyngeal cancer:a review of the literature and proposal for a decisional flow chart," Acta Otorhinolaryngol Italic, vol. 33, no. 5, pp. 299-306, 2013.
[6] E. Katsoulakis, "Hypopharyngeal squamous cell carcinoma: Three-dimensional or Intensity-modulated radiotherapy ? A single institution's experience," Laryngoscope, vol. 126, no. 2, pp. 620-626, 2016.
[7] 張金堅. (2013) 談百年來人類癌症治療發展史. 臺灣醫界. 39-44. Available: http://www.tma.tw/ltk/102560209.pdf
[8] A. S. E. H, "Introduction to Radiotherapy and Standard Teletherapy Techniques," Ophthalmic Radiation Therapy, vol. 52, pp. 1-14, 2013.
[9] U. o. F. Health. (2017). An Introduction to Radiation Therapy. Available: http://radonc.med.ufl.edu/patient-care/information-for-patients/an-introduction-to-radiation-therapy/
[10] G. Patrick, An Introduction to Medicinal Chemistry. Oxford University Press, 2017.
[11] D. S. K. Shewach, "Introduction to cancer chemotherapeutics," Chem Rev, vol. 109, no. 7, pp. 2859-61, 2009.
[12] N. C. Institute. (2000). CANCER REGISTRATION & SURVEILLANCE MODULES. Available: https://training.seer.cancer.gov/modules_reg_surv.html
[13] A. A. Urruticoechea, "Recent advances in cancer therapy: an overview," Curr Pharm Des, vol. 16, no. 1, pp. 3-10, 2010.
[14] 林奕辰, "超音波激發相變液滴汽化用於組織侵蝕術之研究," Master, 生醫工程與環境科學系, 國立清華大學, 2013.
[15] S. Dasari, "Cisplatin in cancer therapy: molecular mechanisms of action," Eur J Pharmacol, vol. 740, pp. 364-78, 2014.
[16] E.-F. D, "Analytical methodologies for metallomics studies of antitumor Pt-containing drugs," Metallomics, vol. 2, no. 1, pp. 19-38, 2010.
[17] A. I. Ivanov, "Cisplarin Bindings Sites on Human Albumin," THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 273, no. 24, pp. 14721-14730, 1998.
[18] A. Basu, "Cellular responses to Cisplatin-induced DNA damage," J Nucleic Acids, vol. 2010, 2010.
[19] A.-M. Florea, "Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects," Cancers (Basel), vol. 3, no. 1, pp. 1351-71, 2011.
[20] M. H. Ohmichi, "Mechanisms of platinum drug resistance," Trends Pharmacol Sci, vol. 26, no. 3, pp. 113-6, 2005.
[21] 林祐賢. (2011) 順鉑造成急性腎損傷之最新進展. 內科學誌. 416-422.
[22] I. Arany, "Cisplatin nephrotoxicity," Seminars in Nephrology, vol. 23, no. 5, pp. 460-464, 2003.
[23] N. L. Dehne, "Cisplatin ototoxicity: involvement of iron and enhanced formation of superoxide anion radicals," Toxicol Appl Pharmacol, vol. 174, no. 1, pp. 27-34, 2001.
[24] J. L. S. Podratz, "Drosophila melanogaster: a new model to study cisplatin-induced neurotoxicity," Neurobiol Dis, vol. 43, no. 2, pp. 330-7, 2011.
[25] N. R. Sharawy, "Evaluation of multi-neuroprotective effects of erythropoietin using cisplatin induced peripheral neurotoxicity model," Exp Toxicol Pathol, vol. 67, no. 4, pp. 315-22, 2015.
[26] F. Kratz, "Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles," J Control Release, vol. 132, no. 3, pp. 171-83, 2008.
[27] Abraxane, "Abraxane®," ed, 2014.
[28] J. Cortes. (2010). Nanoparticle albumin-bound (nab™)-paclitaxel: improving efficacy and tolerability by targeted drug delivery in metastatic breast cancer. Available: http://www.ejcancersupplements.com/article/S1359-6349(10)70002-1/fulltext
[29] N. C. institution. (2013). FDA Approval for Paclitaxel Albumin-stabilized Nanoparticle Formulation. Available: http://www.cancer.gov/cancertopics/druginfo/fda-nanoparticle-paclitaxel
[30] K. Wu, "Investigations of molecular mechanism of action of metal-based anticancer complexes by mass spectrometry," SCIENTIA SINICA Chimica, vol. 47, no. 2, pp. 233-248, 2017.
[31] G. Ferraro, "Cisplatin binding to human serum albumin: a structural study," Chem Commun (Camb), vol. 51, no. 46, pp. 9436-9, 2015.
[32] J. D. HOLDING, "phase one trial of a cisplatin albumin complex for the treatment of cancer of the head and neck," Br. J. clin. Pharmac, vol. 33, pp. 75-81, 1992.
[33] T. C. S. Johnstone, "The Next Generation of Platinum Drugs: Targeted Pt(II) Agents, Nanoparticle Delivery, and Pt(IV) Prodrugs," Chem Rev, vol. 116, no. 5, pp. 3436-86, 2016.
[34] A. Krause-Heuer, "Spectroscopic investigations on the interactions of potent platinum(II) anticancer agents with bovine serum albumin," J Chem Biol, vol. 5, pp. 105-113, 2012.
[35] C. Moller, "Stability, accumulation and cytotoxicity of an albumin-cisplatin adduct," Metallomics, vol. 2, no. 12, pp. 811-8, 2010.
[36] M. N. Sooriyaarachchi, "Comparative hydrolysis and plasma protein binding of cis-platin and carboplatin in human plasma in vitro," Metallomics, vol. 3, no. 1, pp. 49-55, 2011.
[37] 陳思嘉, "靶向超音波於血栓溶解之研究," Master, 電機資訊學院生依電子與資訊學研究所, 國立台灣大學, 2009.
[38] B. R. T. S, "Microbubbles as ultrasound triggered drug carriers," J Pharm Sci, vol. 98, no. 6, pp. 1935-61, 2009.
[39] Y. Z. D. Zhao, "Potential and problems in ultrasound-responsive drug delivery systems," Int J Nanomedicine, vol. 8, pp. 1621-33, 2013.
[40] K. A. H. S, "Microbubbles in ultrasound-triggered drug and gene delivery," Adv Drug Deliv Rev, vol. 60, no. 10, pp. 1153-66, 2008.
[41] 李嘉明, 新超音波醫學1 : 醫用超音波的基礎. 合計圖書出版社, 2003.
[42] 王嘉弘, "高頻超音波驅動電路設計在生醫應用之研究," Master, 醫學科技研究所, 國立暨南國際大學, 2006.
[43] W. D. A, Ultrasonic Bioinstrumentation. Christensen, 1988.
[44] P. H. K. J. J, "The effect of ultrasound on the electrical impedance of biological cells," presented at the IEEE, 1988.
[45] K. J. L. D, "Effect of ultrasound on transdermal drug delivery to rats and guinea pigs," The Journal of Clinical Investigation, vol. 83, no. 2, pp. 2074-2078, 1989.
[46] S. A. T. A, "Synergistic effect of low frequency ultrasound and surfactants on skin permeability," Journal of Pharmaceutical Sciences, vol. 91, no. 1, pp. 91-100, 2002.
[47] M. n. K. T, "Low intensity pulsed ultrasound exposure increases prostaglandin E2 production via the induction of Cyclooxygenase -2 mRNA in mouse osteoblasts," Biochemical and Biophysical Research Communications, vol. 256, no. 2, pp. 284-287, 1999.
[48] S. D. R. I. T. H. G, "High intensity focused ultrasound—a surgical technique for the treatment of discrete liver tumours," Phys Med Biol, vol. 34, no. 11, pp. 1743-1750, 1989.
[49] K. T. L. W, "Acoustic cavitation, bubble dynamics and sonoluminescence," Ultrason Sonochem, vol. 14, no. 4, pp. 484-91, 2007.
[50] T. Leighton, The Acoustic Bubble. London: Academic Press, 1997, p. 613.
[51] 賴俊延, "超音波穴蝕效應於基因傳遞效率之研究," Master, 電機工程學研究所, 國立台灣大學, 2005.
[52] B. S. M. DL, "Ultrasonic enhancement of gene transfection in murine melanoma tumors," Ultrasound Med Biol, vol. 25, no. 9, pp. 1425-30, 1999.
[53] 王鴻偉, "使用三倍頻發射相位法對比劑諧波影像," Master, 電機工程系, 國立台灣科技大學, 2008.
[54] 盧聖介, "包覆空氣微脂體於高頻超音波影像與聲學非線性性質研究與應用," Master, 生醫工程與環境科學研究所, 國立清華大學, 2008.
[55] P. C. F. FS, "Advances in Ultrasound Biomicroscopy," Ultrasound Med. Biol, vol. 26, no. 1, pp. 1-27, 2000.
[56] 謝依峻, "組織背景抑制於諧波對比劑偵測," Master, 電機工程系, 國立台灣科技大學, 2008.
[57] M. AJ, "Scanning Acoustic Microscopy in Eletronics Research IEEE Trans," On Ultrasound, Ferroelectrics, and Frequency Control, vol. 32, no. 2, pp. 320-324, 1985.
[58] G. R. L. DH, "Turnbull DA. Christopher Foster , A 40-100 MHz B-scan Ultrasound backscatter skin imaging," Ultrasound in Med.&Biol, vol. 21, no. 1, pp. 79-88, 1995.
[59] K. DA, "A 100-200 MHz ultrasound biomicroscope.," IEEE Trans Ultrason Ferroelectr Freq Control, vol. 47, no. 6, pp. 1540-9, 2000.
[60] C. Passmann, "Adaptive 150 MHz ultrasound imaging of the skin and the eye using an optimal combination of short pulse mode and pulse compression mode," Seattle, WA, USA, USA, 1995.
[61] C. J. Pavlin, Ultrasound Biomicroscothe Eye Springer-Verlag. Springer, New York, NY, 1995.
[62] 何祚明, "高頻超音波影像系統," Master, 電機工程學研究所, 國立台灣大學, 2002.
[63] W.-S. Chen, "The effect of surface agitation on ultrasound-mediated gene transfer in vitro," The Journal of the Acoustical Society of America, vol. 116, no. 4, pp. 2440-50, 2004.
[64] F. CW, "Ultrasound accelerates transport of recombinant tissue plasminogen activator into clots.," Ultrasound Med Biol, vol. 21, no. 3, pp. 419-24, 1995.
[65] E. EC, "Cavitational mechanisms in ultrasound-accelerated thrombolysis at 1 MHz," Ultrasound Med Biol, vol. 26, no. 7, pp. 1153-60, 2000.
[66] L. P, "Impact of myocardial contrast echocardiography on vascular permeability: an in vivo dose response study of delivery mode, pressure amplitude and contrast dose," Ultrasound Med Biol, vol. 29, no. 9, pp. 1341-9, 2003.
[67] S. Ibsen, "Microbubble-mediated ultrasound therapy: a review of its potential in cancer treatment," Drug design, development and therapy, vol. 7, pp. 375-388, 2013.
[68] F. Yang, "Superparamagnetic iron oxide nanoparticle-embedded encapsulated microbubbles as dual contrast agents of magnetic resonance and ultrasound imaging," Biomaterials, vol. 30, no. 23-24, pp. 3882-3890, 2009.
[69] R. Bekeredjian, "Use of ultrasound contrast agents for gene or drug delivery in cardiovascular medicine," J Am Coll Cardiol, vol. 45, no. 3, pp. 329-35, 2005.
[70] G. W. S. Lanza, "Targeted ultrasonic contrast agents for molecular imaging and therapy," Curr Probl Cardiol, vol. 28, no. 16, pp. 625-53, 2003.
[71] D. Ellegala, "Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to αvβ3," Circulation, vol. 108, no. 3, pp. 336-41, 2003.
[72] A. Lopez-Flores, "A high-performance liquid chromatographic assay for determination of cisplatin in plasma, cancer cell, and tumor samples," Journal of Pharmacological and Toxicological Methods, vol. 52, pp. 366-372, 2005.
[73] S. Tezcan, "High performance liquid chromatographic determination of free cisplatin in different cancer types " Der Pharma Chemica, vol. 5, no. 5, pp. 169-174, 2013.
[74] M. I. Ltd. (2015). Measuring Molecular Weight, Size and Branching of Polymers. Available: https://www.azom.com/article.aspx?ArticleID=12255
[75] M. Ferrer, "Chemosensitizing tumor cells by targeting the Fanconi anemia pathway with an adenovirus overexpressing dominant-negative FANCA," Cancer Gene Ther, vol. 11, no. 8, pp. 539-46, 2004.
[76] Y. Chen, "Dose-response relationship in cisplatin-treated breast cancer xenografts monitored with dynamic contrast-enhanced ultrasound," Chen et al. BMC Cancer, vol. 15, p. 136, 2015.

QR CODE