簡易檢索 / 詳目顯示

研究生: 魏維瑱
Wei-Tian Wei
論文名稱: 複合氧化程序降解水中四甲基氯化銨之研究
Study on Degradation of Aqueous Tetramethyl Ammonium Chloride via Composite Oxidation Process
指導教授: 曾堯宣
Yao-Hsuan Tseng
口試委員: 顧洋
Young Ku
胡哲嘉
Che-Chia Hu
陳士勛
Shih-Hsun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 84
中文關鍵詞: 錳改質光催話四甲基氯化銨複合氧化程序
外文關鍵詞: manganese modification, photocatalytic reaction, tetramethylammonium chloride, composite oxidation processes
相關次數: 點閱:148下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究使用複合氧化技術(紫外線/過氧化氫/二氧化鈦)降解水中四甲基氯化銨,並且使用錳作為負載物 ,以含浸法改質二氧化鈦粉體及溶膠,以分析改質前後對光催化反應之影響。藉由改變反應參數(光觸媒用量、錳改質效果、過氧化氫濃度、四甲基氯化銨濃度等)探討其對四甲基氯化銨去除率的影響。另以紫外光光譜儀、X光繞射儀、掃描式電子顯微鏡、螢光光譜儀對改質後的光觸媒進行材料分析,以確認改質前後之光電特性變化及其對光催化反應之影響。實驗結果顯示,光觸媒用量因增加反應面積與遮蔽交互作用下有一最適值,在應用複合氧化程序中,初始過氧化氫濃度亦有最適用量,係因 隨著過氧化氫濃
度的增加,能產生的氫氧自由基數量增多,進而提升氧化力。而過量的過氧化氫則會扮演捕捉劑的角色,使氫氧自由基數量減少,進而光催化反應速率相對較低。在錳改質光觸媒方面,使用0.1% 錳改質二氧化鈦可減少電子電洞再結合速率而提升反應速率。本研究藉由氣相層析質譜儀與陰陽離子層析儀分析中間產物,顯示 TMA+經光催化反應後會產生三甲基胺、二甲基胺、甲胺及最終產物(NH4+、NO2-、NO3-)。整體實驗結果顯示,使用紫外光/二氧化鈦/過氧化氫的批次反應器中,可將100ppm 的四甲基氯化銨在4小時達成移除率約93%,礦化率為60%,與紫外光/錳改質二氧化鈦系統所得之TMA+移除率近似。在使用填充床反應器模擬實廠處理時,紫外光/過氧化氫/二氧化鈦-球型載體系統,可以在4小時後達成99%的TMA+移除率以及67%礦化率,為吸附與光催化反應的協同作用。兩者系統皆顯示複合氧化程序(紫外光/錳-二氧化鈦/過氧化氫)可成功將水中四甲基氯化銨移除並且提高礦化率,達水質淨化之需求。


The degradation of tetramethylammonium chloride in aqueous solution via com-posite oxidation process (UV/TiO2/H2O2) was studied in this work. The manganese-modification of TiO2 surface was carried out with using impregnation method for photocatalyst powder and sol. The effects of amount of H2O2, manganese modification, concentration of tetramethylammonium chloride, and amount of TiO2 on removal efficiency of tetramethyl ammonium ion (TMA+) and total organic carbon (TOC) were investigated. The surface analyses on the TiO2, evidenced from X-ray diffractometry (XRD), scanning electron microscope (SEM), UV-VIS spectroscopy, and fluorescence spectrometer (PL), indicated the effect of manganese modification on physico-chemical properties and photocatalytic activity.
Results showed that the presence of optimal usage amount of photocatalyst, 100 mg/L, was resulted from the increase in reaction area and light shielding effect. There was also an optimal dosage amount of H2O2 for this reaction. The amount of hydroxyl free radicals was increased with the increase in H2O2 concentration. The excess of H2O2 would inhibit photocatalytic activity due to H2O2 played a role of hydroxyl radical scavenger as it was overdosed. The photocatalytic reaction rate was enhanced with using 0.1wt%-Mn modification, which retarded the electron-hole recombination rates. To clarify reaction mechanism, the qualitative analyses of samples were carried out with using gas chromatography-mass spectrometry (GC-MS) and ion chromatography(IC). Trimethyl amine, dimethyl amine, methylamine, and final products (nitrite, nitrate, and ammonium ions) were found after photocatalytic reactions.
In this work, removal efficiency and mineralization efficiency of 100 mg/L tetra-methylammonium chloride in the UV/TiO2/H2O2 batch system reached 93% and 60%after 4 h of reaction, respectively. In order to simulate the field state, a packed bed reactor equipped with photocatalyst-coated meaical stone was further established for degrading tetramethylammonium chloride. In this system, 99% removal efficiency and 67% actual mineralization were achieved in the presence of synergic effect of photocatalysis and adsorption. As described above, the composite oxidation process (UV/Mn-TiO2/H2O2) can be used for removal and mineralization of tetramethylammonium chloride in aqueous solution successfully, which can be applied to purify water in high tech industries.

致謝 i 摘要 ii Abstract iii 目錄 v 圖目錄 ix 表目錄 xii 一 前言 1 1.1 研究緣起 1 1.2 研究動機 3 二 文獻回顧 4 2.1 光催化反應 4 2.1.1 光催化反應原理 4 2.1.2 光觸媒簡介 6 2.1.3 光觸媒改質 8 2.2 複合氧化程序 13 2.2.1 複合氧化程序原理 13 2.2.2 UV/H2O2應用 16 三 實驗 20 3.1 實驗設計 20 3.2 實驗藥品 21 3.3 實驗儀器及設備 22 3.3.1 離子層析儀 22 3.3.2 高溫燃燒式總有機碳分析儀 25 3.3.3 氣相層析質譜儀 26 3.3.4 紫外線光強度計 27 3.3.5 紫外-可見光光譜儀 27 3.3.6 螢光光子激發光譜儀 27 3.3.7 感應耦合電漿原子發射光譜儀 28 3.3.8 場發射型掃描式電子顯微鏡 28 3.3.9 X光繞射儀 28 3.3.10 動態光散射粒徑分析儀 29 3.4 實驗步驟 30 3.4.1 Mn改質TiO2粉體之製備 31 3.4.2 Mn改質TiO2溶膠之製備 31 3.4.3 VUV光分解空白測試 31 3.4.4 光觸媒粉體降解四甲基氯化銨之測試 32 3.4.5 於多孔性載體上光觸媒降解四甲基氯化銨之測試 32 3.4.6 光觸媒催化偕同強氧化劑效果測試 32 3.4.7 觸媒分析之製備 32 四 結果與討論 33 4.1 背景實驗 33 4.1.1 四甲基氯化銨穩定性 33 4.1.2 吸附反應 33 4.2 UV/TiO2/H2O2 批次反應器 34 4.2.1 TMA+之光解測試 34 4.2.2 TiO2用量影響 35 4.2.3 初始汙染物濃度 36 4.2.4 初始過氧化氫 38 4.2.5 金屬改質觸媒粉體之應用 42 4.3 光觸媒塗佈於載體之應用 43 4.3.1 金屬改質觸媒附載於球型載體 43 4.3.2 UV/Mn-TiO2/H2O2 管式系統 45 4.3.3 吸附量測試 48 4.3.4 光催化反應證明 49 4.4 觸媒材料分析 50 4.4.1 金屬擔載量 50 4.4.2 UV-Vis 吸收光譜分析 51 4.4.3 PL螢光光譜儀 52 4.4.4 XRD晶體結構分析 53 4.4.5 SEM表面形態分析 54 4.4.6 DLS粒徑分析 55 4.4.7 Mn改質光觸媒材料分析 56 4.5 光催化程序機理 56 4.5.1 動力學 56 4.5.2 反應機制 59 4.5.3 N原子平衡 61 五 結論 64 5.1 結論 64 5.1.1 結合複合氧化程序 64 5.1.2 光催化反應 64 5.1.3 金屬改質效應 64 5.2 未來展望 65 5.2.1 反應器設計 65 5.2.2 開發光觸媒 65 5.2.3 反應物濃度應用範圍 65 5.2.4 微觀動力學分析 66 5.2.5 經濟考量 66 5.2.6 反應穩定性及長效性 66 參考文獻 67

[1] K. F. Chang, S. Y. Yang, H. S. You, and J. R. Pan, "Anaerobic Treatment of Tetra-Methyl Ammonium Hydroxide (TMAH) Containing Wastewater," IEEE Transactions on Semiconductor Manufacturing, vol. 21, no. 3, pp. 486-491, 2008.
[2] 科技部新竹科學園區管理局 (2020),「科技部新竹科學園區管理局新竹園區下水道可容納排入之水質標準」。
[3] J. Shibata, N. Murayama, and S. Matsumoto, "Recovery of Tetra-Methyl Ammonium Hydroxide from Waste Solution by Ion Exchange Resin," Resources Processing, vol. 53, no. 4, pp. 199-203, 2006.
[4] H. Y. Shu, M. C. Chang, J. J. Liu, "Cation resin fixed-bed column for the recovery of valuable THAM reagent from the wastewater," Process Safety and Environmental Protection, vol. 104, pp. 571-586, 2016.
[5] K. Hirano, J. Okamura, T. Taira, K. Sano, A. Toyoda, and M. Ikeda, "An efficient treatment technique for TMAH wastewater by catalytic oxidation," Ieee Transactions on Semiconductor Manufacturing, vol. 14, no. 3, pp. 202-206, 2001.
[6] C. N. Lei, L. M. Whang, and P. C. Chen, "Biological treatment of thin-film transistor liquid crystal display (TFT-LCD) wastewater using aerobic and anoxic/oxic sequencing batch reactors," Chemosphere, vol. 81, no. 1, pp. 57-64, 2010.
[7] S. Chang, K. Y. Lin, C. Lu, "Efficient adsorptive removal of Tetramethylammonium hydroxide (TMAH) from water using graphene oxide," Separation and Purification Technology, vol. 133, pp. 99-107, 2014.
[8] T. H. Hu, Whang, L. M., Liu, P. W., Hung, Y. C., Chen, H. W., "Biological treatment of TMAH (tetra-methyl ammonium hydroxide) in a full-scale TFT-LCD wastewater treatment plant," Chemosphere, vol. 113, pp. 303-10, 2012.
[9] C. W. Wang, C. Liang, "Oxidative degradation of TMAH solution with UV persulfate activation," Chemical Engineering Journal, vol. 254, pp. 472-478, 2014.
[10] C. S. Chiou, K. J. Chuang, Y. F. Lin, H. W. Chen, C. M. Ma, "Application of Ozone Related Processes to Mineralize Tetramethyl Ammonium Hydroxide in Aqueous Solution," International Journal of Photoenergy, vol. 2013, pp. 1-7, 2013.
[11] 賈志成,陳弘偉,葉世賢,何瑞庄 (2014)。中華民國專利號 I423836。中華民國智慧財產局。
[12] S. E. Olsen, M. Tangstad, T. Lindstad (2007). Production of Manganese Ferroalloys: Tapir Akademisk Forlag.
[13] E. O. Oseghe, P. G. Ndungu, S. B. Jonnalagadda, "Synthesis of mesoporous Mn/TiO2 nanocomposites and investigating the photocatalytic properties in aqueous systems," Environmental Science and Pollution Research international, vol. 22, no. 1, pp. 211-22, 2015.
[14] R. Thiruvenkatachari, S. Vigneswaran, "A review on UV/TiO2 photocatalytic oxidation process," Korean Journal Chemical Engineering, vol. 25, pp. 64-72, 2008.
[15] C. D. Jaeger, A. J. Bard, "Spin trapping and electron spin resonance detection of radical intermediates in the photodecomposition of water at TiO2 particulate systems," The Journal of Physical Chemistry, vol. 83, pp. 3146-3152, 1979.
[16] S. M. Woodley, C. R. A. Catlow, "Structure prediction of titania phases: Implementation of Darwinian versus Lamarckian concepts in an Evolutionary Algorithm," Computational Materials Science, vol. 45, no. 1, pp. 84-95, 2009.
[17] S. Mo, W. Y. Ching, "Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite," Physical Review B, vol. 51, no. 19, pp. 13023-13032, 1995.
[18] B. Sun, A. V. Vorontsov, P. G. Smirniotis, "Role of platinum deposited on TiO2 in phenol photocatalytic oxidation," Langmuir, vol. 19, no. 8, pp. 3151-3156, 2003.
[19] D. C. Hurum, K. A. Gray, T. Rajh, M. C. Thurnauer, "Recombination Pathways in the Degussa P25 Formulation of TiO2: Surface versus Lattice Mechanisms," The Journal of Physical Chemistry B, vol. 109, pp. 5388-5388, 2005.
[20] T. Ohno, K. Sarukawa, K. Tokieda, and M. Matsumura, "Morphology of a TiO2 Photocatalyst (Degussa, P-25) Consisting of Anatase and Rutile Crystalline Phases," Journal of Catalysis, vol. 203, no. 1, pp. 82-86, 2001.
[21] D. C. Hurum, K. A. Gray, A. G. Agrios, T. Rajh, M. C. Thurnauer, "Explaining the Enhanced Photocatalytic Activity of Degussa P25 Mixed-Phase TiO2 Using EPR," The Journal of Physical Chemistry B, vol. 107, pp. 4545-4549, 2003.
[22] R. Chauhan, A. Kumar, and R. P. Chaudhary, "Structural and photocatalytic studies of Mn doped TiO2 nanoparticles," Spectrochim Acta A Mol Biomol Spectrosc, vol. 98, pp. 256-264, 2012.
[23] V. D. Binas, K. Sambani, T. Maggos, A. Katsanaki, G. Kiriakidis, "Synthesis and photocatalytic activity of Mn-doped TiO2 nanostructured powders under UV and visible light," Applied Catalysis B: Environmental, vol. 113-114, pp. 79-86, 2012.
[24] D. Kim, Y. Im, K. M. Jeong, S. M. Park, M. H. Um, M. Kang, "Enhanced 2-Chorophenol Photodecomposition using Nano-Sized Mn-incorporated TiO2 Powders Prepared by a Solvothermal Method," Bulletin of the Korean Chemical Society, vol. 35, no. 8, pp. 2295-2298, 2014.
[25] L. Gnanasekaran, R. Hemamalini, R. Saravanan, K. Ravichandran, F. Gracia, V. K. Gupta, "Intermediate state created by dopant ions (Mn, Co and Zr) into TiO2 nanoparticles for degradation of dyes under visible light," Journal of Molecular Liquids, vol. 223, pp. 652-659, 2016.
[26] L. G. Devi, N. Kottam, B. N. Murthy, and S. G. Kumar, "Enhanced photocatalytic activity of transition metal ions Mn2+, Ni2+ and Zn2+ doped polycrystalline titania for the degradation of Aniline Blue under UV/solar light," Journal of Molecular Catalysis A: Chemical, vol. 328, no. 1-2, pp. 44-52, 2010.
[27] V. C. Papadimitriou, V. G. Stefanopoulos, M. N. Romanias, P. Papagiannakopoulos, K. Sambani, V. Tudose, G. Kiriakidis, "Determination of photo-catalytic activity of un-doped and Mn-doped TiO2 anatase powders on acetaldehyde under UV and visible light," Thin Solid Films, vol. 520, no. 4, pp. 1195-1201, 2011.
[28] J. A. Khan, M. Sayed, S. Khan, N. S. Shah, D. D. Dionysiou, G. Boczkaj, "Advanced oxidation processes for the treatment of contaminants of emerging concern," Contaminants of Emerging Concern in Water and Wastewater, pp. 299-365, 2020.
[29] 蘇皆綸,林耀堅,游淞仁,「過硫酸鹽光照反應搭配二氧化鈦光觸媒降解 TMAH(氫氧化四甲銨氫氧化四甲銨)之研究」,之研究」,中華民國環境工程學會2010 廢水處理技術研討會,2010。
[30] 巫玉娟,「活性碳纖維塗覆二氧化鈦光觸媒去除揮發性有機物之可行性研究」,國立中山大學環境工程研究所,2010。
[31] M. C. Vagi, A. S. Petsas, M. N. Kostopoulou, T. D. Lekksa, "Photocatalytic Degradation of the Organophosphorus Pesticide Fenthion in Aqueous Suspensions of TiO2 Under UV Irradiation," Proceedings of the 13th International Conference of Environmental Science and Technology, pp. 5-7, 2013.
[32] W. Den, F. H. Ho, and T. Y. Huang, "Treatment of organic wastewater discharged from semiconductor manufacturing process by ultraviolet/hydrogen peroxide and biodegradation," IEEE Transactions on Semiconductor Manufacturing, vol. 15, no. 4, pp. 540-551, 2002.
[33] A. Boutiti, R. Zouaghi, S. E. Bendjabeur, S. Guittonneau, T. Sehili, "Photodegradation of 1-hexyl-3-methylimidazolium by UV/H2O2 and UV/TiO2:
70
Influence of pH and chloride," Journal of Photochemistry and Photobiology A: Chemistry, vol. 336, pp. 164-169, 2017.
[34] A. T. Nguyen, C. T. Hsieh, and R. S. Juang, "Substituent effects on photodegradation of phenols in binary mixtures by hybrid H2O2 and TiO2 suspensions under UV irradiation," Journal of the Taiwan Institute of Chemical Engineers, vol. 62, pp. 68-75, 2016.
[35] H. T. Li, Q. Gao, B. Han, Z. H. Ren, K. S. Xia, C. G. Zhou, "Partial-Redox-Promoted Mn Cycling of Mn(II)-Doped Heterogeneous Catalyst for Efficient H2O2-Mediated Oxidation," ACS Applied Materials and Interfaces, vol. 9, no. 1, pp. 371-380, 2017.
[36] J. Sharma, I. M. Mishra, V. Kumar, "Degradation and mineralization of Bisphenol A (BPA) in aqueous solution using advanced oxidation processes: UV/H2O2 and UV/S2O82- oxidation systems," Journal of Environmental Management, vol. 156, pp. 266-275, 2015.
[37] W. Chu, W. K. Choy, T. Y. So, "The effect of solution pH and peroxide in the TiO2-induced photocatalysis of chlorinated aniline," Journal of Hazardous Materials, vol. 141, no. 1, pp. 86-91, 2007.
[38] 南部科學工業園區管理局,「南科台南園區光電產業廢水特性研究暨管制策略研訂」,中華民國97年2月29日。
[39] J. Wu, Y. T. Cheng, "In situ FTIR study of photocatalytic NO reaction on photocatalysts under UV irradiation," Journal of Catalysis, vol. 237, no. 2, pp. 393-404, 2006.
[40] B. H. J. Bielski, D. E. Cabelli, R. L. Arudi, "Reactivity of HO2/O−2 Radicals in Aqueous Solution," Journal of Physical and Chemical Reference Data, vol. 14, no. 4, pp. 1041-1100, 1985.
[41] O. L. Rasmussen, K. Sehested, H. Fricke, "Rate Constants of OH with HO2, O2- , and H2O2+ from Hydrogen," The Journal of Physical Chemistry, vol. 72, no. 2, pp. 626-631, 1968.
[42] G. V. Buxton, C. L. Greenstock, W. P. Helman, and A. B. Ross, "Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O− in Aqueous Solution," Journal of Physical and Chemical Reference Data, vol. 17, no. 2, pp. 513-886, 1988.
[43] E. S. Elmolla, M. Chaudhuri, "Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis," Desalination, vol. 252, no. 1-3, pp. 46-52, 2010.
[44] M. H. Habibi, A. Hassanzadeh, and S. Mahdavi, "The effect of operational parameters on the photocatalytic degradation of three textile azo dyes in
71
aqueous TiO2 suspensions," Journal of Photochemistry and Photobiology A: Chemistry, vol. 172, no. 1, pp. 89-96, 2005.
[45] I. K. Konstantinou and T. A. Albanis, "TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A Review," Applied Catalysis B: Environmental, vol. 49, no. 1, pp. 1-14, 2004.
[46] A. G. Rincon, C. Pulgarin, "Effect of pH, inorganic ions, organic matter and H2O2 on E. coli K12 photocatalytic inactivation by TiO2 Implications in solar water disinfection," Applied Catalysis B: Environmental, vol. 51, no. 4, pp. 283-302, 2004.
[47] S. Kim, W. Choi, "Kinetics and Mechanisms of Photocatalytic Degradation of (CH3)nNH4-n+ (0≦≦n≦≦4) in TiO2 Suspension: The Role of OH Radicals," School of Environmental Science and Engineering, vol. 36, pp. 790-784, 2002.

無法下載圖示 全文公開日期 2025/08/07 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE