研究生: |
黃彥儒 Yen-Ru Huang |
---|---|
論文名稱: |
設計及製作用於氣體偵測之760nm新型外腔式雷射 Design and Fabrication of 760-nm Novel External Cavity Laser for Gas Sensing Applications |
指導教授: |
李三良
San-Liang Lee |
口試委員: |
毛明華
Ming-Hua Mao 劉政光 Cheng-Kuang Liu 廖顯奎 Shien-Kuei Liaw |
學位類別: |
碩士 Master |
系所名稱: |
電資學院 - 電子工程系 Department of Electronic and Computer Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 86 |
中文關鍵詞: | 760nm波段外腔式雷射 、光纖布拉格光柵 |
外文關鍵詞: | 760-nm External Cavity Laser, Fiber Bragg Grating |
相關次數: | 點閱:496 下載:7 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文重點為應用於氣體偵測之760奈米新型外腔式雷射的設計與製作。因為材料的選擇以及二次磊晶上的困難,760奈米的分佈反饋式雷射、光柵分佈式布拉格反射雷射及垂直共振腔面射型雷射是非常難以製作的,所以我們選擇利用結構較簡單、成本也較低的外腔式雷射來達到單模的效果,以用於即時氧氣氣體濃度偵測系統中。本論文之外腔式雷射製作方式為,利用一般的760奈米法布里•比洛雷射,連接上二階的光纖光柵,使之輸出光譜圖為單波長之雷射。其輸出波長可藉由溫度調動或電流調動,而有大於0.2奈米的可調波長範圍,旁模抑制比也都可達到28分貝以上,可使輸出波長對準氧氣的吸收頻譜。此型新型外腔式雷射可藉由量測直接吸收頻譜,用於氧氣氣體濃度偵測系統中。
本論文也就覆晶封裝的技術進行改良,我們使用無害之錫銅合金作為焊料,為了克服以電鍍機製作錫球會有均勻度不佳的問題,我們使用電子束蒸鍍機來蒸鍍錫銅合金,並大幅降低錫銅合金的高度,以提高製程上的良率。並且我們也在V型溝槽的均勻度做改善,以期能有更好的耦光效率。而綜合以上我們所做的改善,我們相信可以藉著將760奈米法布里•比洛雷射與二階之光纖光柵積體化在同一矽晶片上,以達到單波長輸出,並且低成本的外腔式雷射。
It is very difficult to realize short-wavelength single-mode laser such as distributed-Bragg-reflector laser, distributed feedback laser, and vertical cavity surface-emitting laser. The main problems arises from the material issues. In this thesis, we focus on the design and fabrication of 760-nm novel external cavity lasers for gas sensing applications. Firstly, we try to use a second-ordered fiber Bragg grating (FBG) as an external reflector to provide wavelength filtering function. We use a commercial 760 nm FP laser connected with a FBG, which is designed for 1520 nm, to achieve single wavelength output. In its optimal working condition, this laser can be tuned over 0.2 nm wavelength range by current tuning and/or temperature tuning; and it can have >28dB side-mode suppression ratio over its tuning range. We believe that this laser can be used to address O2 absorption lines and thus monitor its concentration by direct absorption method. The relative simpler and cheaper laser source can further reduce the installation cost.
We also try to integrate FP laser with gratings to improve its performance and reliability. In the rest parts of this thesis, we study on the flip-chip bonding technique and make some improvement such as the use of lead-free solder and the deposition of Sn-Cu bump by means of E-beam evaporation, insteading of conventional electro-plating method. We also realize uniform v-groove patterns on silicon substrate for further packaging and integration procedures. By combining these efforts, I believe that single-mode 760 nm laser integrated with an external Bragg grating on a chip can be achieved with low-cost in the future.
[ ] L. S. Rothman et al., “The HITRAN Molecular Spectroscopic Database: Edition of 2000 Including Updates through 2001,” J. Quant. Spectrosc. And Rad. Transfer, Vol. 82, pp. 5-44, 2003.
[2] N. A. Morris, J. C. Connolly, and J. H. Abeles, “Single-Mode Distributed-Feedback 761-nm GaAs-AlGaAs Quantum-Well Laser,” IEEE Photonics Technology Letters, Vol. 7, No. 5, MAY 1995.
[3] V. Weldon, J. O’Gorman, J. J. Perez-Camacho, and J. Hegarty, “Oxygen Sensing Using Single Frequency GaAs-AlGaAs DFB Laser Diodes and VCSELs,” Electronics Letters, Vol. 32, No. 3, 1996.
[4] L. A. Coldren, and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, New York:Wiley, 1995.
[5] S. O. Kasap, Optoelectronics and Photonics Principles and Practices, Pearson Education, 2001.
[6] G. P. Agrawal, and N. K. Dutta, Semiconductor Lasers, Van Nostrand Reinhold, 1993.
[7] R. Kashyap, Fiber Bragg Gratings, Academic Press, San Diego, 1999.
[8] M. Kato, R. Furukawa, T. Terashima, and H. Takano, “Large Coupling Tolerance Side-Illuminated Mirror Photodiode for Low-Cost Surface Hybrid Integration, ” IEEE Photonics Technology Letters, Vol. 11, No. 6, June 1999.
[9] M. F. Dautartas, G. E. Blonder, Y. H. Wong, and Y. C. Chen, “ A Self-Aligned Optical Subassembly for Multi-Mode Devices,” IEEE Transactions on Components, Packaging, and Manufacturing Technology - Part B, Vol. 18, No. 3, pp. 552-555, August 1995.
[10] H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgärtel, “Anisotropic Etching of Crystalline Silicon in Alkaline Solution-Influence of Dopants,” J. of Electrochem. Soc., Vol. 137, p. 3626, 1990.
[11] 莊達人, VLSI製造技術, 高立圖書有限公司。
[12] T. Baum, and D. J. Schiffrin, “AFM study of surface finish improvement by ultrasound in the anisotropic etching of Si<100> in KOH for micromachining applications,” J. Micromech. Microeng, No. 4, pp. 338-342, 1997.
[13] Y. Lv, J. Ma, J. Zou, and X. Wang, ”Research of anisotropic etching in KOH water solution with isopropyl alcohol” IEEE Communications, Circuits and Systems and West Sino Expositions, Vol. 2, pp.1779-1783, July 2002.
[14] Kenji Tokoro et al., “Anisotropic Etching Properties of Silicon in KOH and TMAH Solutions,” IEEE International Symposium on Micromechatronics and Human Science, p.65-69, 1998.
[15] 陳瑞川,「利用覆晶技術封裝雷射陣列模組之研究」,台灣科技大學電子工程系碩士論文, 2006年。
[16] 陳宣臣,「波長可調光纖光柵之研製與應用」,台灣科技大學電子工程系碩士論文, 2004年。
[17] 洪寬綸,「建構於光纖光柵之光纖雷射、光感測與光監控技術之研究」,台灣科技大學電子工程系碩士論文, 2006年。
[18] 鍾國興,「建構於光纖光柵之光纖雷射研製」,台灣科技大學電子工程系碩士論文, 2007年。