簡易檢索 / 詳目顯示

研究生: Fikreselam Gared Mengistu
Fikreselam - Gared Mengistu
論文名稱: Robust Decoding Schemes for Coded Transmission Through a Markov Gaussian Channel
Robust Decoding Schemes for Coded Transmission Through a Markov Gaussian Channel
指導教授: 韓永祥
Yunghsiang S. Han
曾德峰
Der-Feng Tseng
口試委員: 白宏達
Hung-Ta Pai
陳伯寧
Po-Ning Chen
張立中
Li-Chung Chang
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 144
中文關鍵詞: Impulse noiseMarkov Gaussian channeltransition probabilityViterbi algorithm (VA)Turbo decoder
外文關鍵詞: Impulse noise, Markov Gaussian channel, transition probability, Viterbi algorithm (VA), Turbo decoder
相關次數: 點閱:232下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 通信系統很容易受到脈衝雜訊干擾,特別是當脈衝的統計特性隨時
    間變化,且難以精確地建立模型。為了解決脈衝雜訊的挑戰,本論文提出
    一個適用於具記憶效應的脈衝雜訊通道的強健且高效率的維特比(Viterbi)
    和渦輪(Turbo)解碼方法。首先,此方法在不依賴脈衝的統計模型的前
    提下,於任意連續的迴旋編碼狀態下擴展格狀態的概念,也就是說,考量
    通道的記憶狀態(過渡機率),進而持用眾所皆知的維特比算法(VA)
    來執行最大相似解碼(Maximum Likelihood Decoding)。此外,論文
    詳述此類似維特比解碼,並由分析的結果強調出該方法與傳統的維特比算
    法於效率上做比較。緊接著,我們也使用前述的概念,提出應用於馬爾可
    夫高斯(Markov Gaussian)通道的強健渦輪解碼;適當的替代了提出之
    VA 的二維網格圖所獲得的VA 分支量度(Branch Metrics)於渦輪解碼
    器。
    模擬結果指出,我們所提之維特比和渦輪解碼方式的非常地強健:
    此解碼器的位元錯誤率(Bit Error Rate)效能非常接近使用脈衝統計資
    訊的最佳譯碼器;此外,提出的維特比解碼器並與α-逞罰函數解碼器
    (α- PFD)相比較。經由模擬的結果表示,提出的維特比解碼器比α-
    PFD 來得優秀,因為在普遍的條件下α- PFD 忽略通道的記憶特性並因
    此遭遇到無法壓低的錯誤率。相同的特徵也表現在本論文提出之強健型渦
    輪解碼器:位元錯誤率效能與使用脈衝統計資訊的最佳譯碼器所演繹出的
    結果非常接近。


    Communication systems are susceptible to impulse noise, particularly when
    the impulse statistics are not time-invariant and are difficult to accurately
    model. To address the challenge of impulse noise, a robust and efficient Viterbi
    and turbo decoding schemes were devised over memory impulse noise channels.
    By accommodating channel states, but without relying on statistical knowledge
    of impulses, the Viterbi algorithm (VA) based on an expanded set of trellis
    states, was employed to perform maximum likelihood decoding. A detailed
    analysis of complexity for the proposed Viterbi decoding was offered; the analytical
    results reinforced the efficiency of the proposed scheme compared with
    the traditional VA. We also proposed robust turbo decoding algorithm over a
    Markov Gaussian channel. The branch metrics obtained from the two- dimensional
    trellis diagram of the proposed VA was adapted to propose robust turbo
    decoding scheme.
    The simulation results indicated that the proposed Viterbi and turbo decoding
    schemes are compellingly robust: the bit error probability performance
    level attained using the proposed decoders is remarkably close to that of an
    optimal decoder, which uses impulse statistics; furthermore, the proposed decoders
    were compared with the alpha-penalty function decoder (alpha-PFD).
    The reported result showed that the proposed decoders are superior to an
    alpha-PFD because alpha-PFD neglects the channel memory property and experiences
    an error floor, in fairly general circumstances.

    Abstract in Chinese . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Abstract in English. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Acknowledgements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv List of Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xvii 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Background Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Non-Gaussian Impulse Noise . . . . . . . . . . . . . . . . . . . . . 3 1.4 Memoryless and Memory Channel . . . . . . . . . . . . . . . . . . 5 1.5 Objective and Contributions of Thesis . . . . . . . . . . . . . . . . 7 1.6 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 10 2 Review of Encoding and Decoding over Communication Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1 Overview of Convolutional and Turbo Codes . . . . . . . . . . . . 12 2.1.1 Channel Coding . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1.2 Convolutional Encoder . . . . . . . . . . . . . . . . . . . . . 13 2.1.3 Viterbi Decoder . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1.4 Turbo Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1.5 BCJR Algorithm and Turbo Decoder . . . . . . . . . . . . . 20 2.2 Decoders over Memoryless Channel . . . . . . . . . . . . . . . . . 22 2.3 Decoders over Memory Channel . . . . . . . . . . . . . . . . . . . . 25 vi 3 Robust Viterbi Decoding of Convolutionally Coded Transmission Through a Markov Gaussian Channel . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2.1 Convolutionally Coded Communication Systems . . . . . . 29 3.2.2 Noise Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3 Proposed Robust Decoding Metric . . . . . . . . . . . . . . . . . . . 33 3.4 Metrics on Trellis Diagram . . . . . . . . . . . . . . . . . . . . . . 38 3.5 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . 45 4 Robust Turbo Decoding Through a Markov Gaussian Channel . 51 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.3 Proposed Turbo Decoding Algorithm with Extended Trellis Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.3.1 Extended trellis diagram . . . . . . . . . . . . . . . . . . . . 55 4.3.2 LLR of the Proposed Decoding Metric . . . . . . . . . . . . 56 4.3.3 Proposed Branch Metric . . . . . . . . . . . . . . . . . . . . 61 4.3.4 Forward Recursion for ˜α Metric . . . . . . . . . . . . . . . 65 4.3.5 Backward Recursion for ˜ β Metric . . . . . . . . . . . . . . 68 4.3.6 Extrinsic Information . . . . . . . . . . . . . . . . . . . . . . 71 5 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.1 Simulation Results and Discussion for the Proposed Viterbi Decoder over a Markov Gaussian Channel . . . . . . . . . . . . . . . 73 5.1.1 Infinite Interleaving . . . . . . . . . . . . . . . . . . . . . . 75 5.1.2 Robustness Against R and PBG for Various PB under Finite Interleaving . . . . . . . . . . . . . . . . . . . . . . . . 77 5.1.3 Effect of the Interleaver length on BER Performance . . . 80 5.1.4 Effect of the Estimated Impulse Strength on BER Performance under Finite Interleaving . . . . . . . . . . . . . . . 82 5.1.5 Effect of the Estimated burst length on BER Performance under Finite Interleaving . . . . . . . . . . . . . . . . . . . 83 5.1.6 Robustness of the Proposed Scheme Against Markov Gaussian Channel under Finite Interleaving . . . . . . . . . . . 84 5.2 Simulation Results and Discussion for the Proposed Turbo Decoder over a Markov Gaussian Channel . . . . . . . . . . . . . . . 86 5.2.1 Effect of the Number of Iterations . . . . . . . . . . . . . . 87 5.2.2 Effect of Impulse Occurrence Probability . . . . . . . . . . 89 5.2.3 Effect of Channel Interleaver size . . . . . . . . . . . . . . . 94 vii 5.2.4 Robustness of the Proposed Turbo Decoder Against R and PB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.2.5 Performance Comparison Between the Proposed Turbo Decoder and Alpha-PFD . . . . . . . . . . . . . . . . . . . . . . 100 6 Conclusions and Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103 6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105 A Derivation of Forward and Backward Recursion . . . . . . . . . . . . . . . . .112 B Derivation of MAP Decoding rule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114 C Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117

    [1] J. G. Proakis and M. Salehi, Communication systems engineering.
    Prentice-hall Englewood Cliffs, 2002.
    [2] H. C. Ferreira, L. Lutz, N. John, and G. Theo, Power line communications.
    John Wiley, 2010.
    [3] D. Anastasiadou and T. Antonakopoulos, “Multipath characterization of
    indoor power-line networks,” IEEE Trans. on Power Delivery, vol. 20, no. 1,
    pp. 90–99, Feb. 2005.
    [4] V. Degardin, M. Lienard, and P. Degauque, “Transmission on indoor power
    lines: from a stochastic channel model to the optimization and performance
    evaluation of multicarrier systems,” Int. J. Commun. Syst., vol. 16,
    no. 5, pp. 363–379, Apr. 2003.
    [5] M. Zimmermann and K. Dostert, “Analysis and modeling of impulsive
    noise in broad-band powerline communications,” IEEE Trans. Electromagn.
    Compat., vol. 44, no. 1, pp. 249–258, Feb. 2002.
    [6] L. Tang, P. So, E. Gunawan, Y. Guan, S. Chen, and T. Lie, “Characterization
    and modeling of in-building power lines for high-speed data transmission,”
    IEEE Trans. on Power Delivery, vol. 18, no. 1, pp. 69–77, 2003.
    [7] S. Lin and D. J. C. Jr., Error Control Coding: Fundamentals and Applications.
    Englewood Cliffs, NJ: Prentice Hall Inc., 2004.
    [8] M. K. Simon and M.-S. Alouini, Digital communication over fading channels.
    EJohn Wiley & Sons, 2005.
    [9] D. Middleton, “Non-Gaussian noise models in signal processing for
    telecommunications: new methods an results for class-A and class-B noise
    models,” IEEE Trans. on Inf. Theory, vol. 45, no. 4, pp. 1129–1149, 1999.
    [10] E. Gilbert and H. Pollak, “Amplitude distribution of shot noise,” Bell System
    Technical Journal, vol. 39, no. 2, pp. 333–350, 1960.
    [11] S. Miyamoto, N. Morinaga, and M. Katayama, “Receiver design using the
    dependence between quadrature components of impulsive radio noise,”
    Electronics and Communications in Japan (Part I: Communications),
    vol. 78, no. 5, pp. 44–56, 1995.
    [12] A. D. Spaulding and D. Middleton, “Optimum reception in an impulsive
    interference environment–part i: coherent detection,” IEEE Trans. on
    Commu., vol. 25, no. 9, pp. 910–923, Sep. 1977.
    [13] L. A. Berry, “Understanding middleton’s canonical formula for class-A
    noise,” IEEE Trans. Electromagn. Compat., no. 4, pp. 337–344, 1981.
    [14] D. Middleton, “Canonical and quasi-canonical probability models of class-
    A interference,” IEEE Trans. Electromagn. Compat., vol. 25, no. 2, pp.
    76–106, May 1983.
    [15] J. Ilow and D. Hatzinakos, “Analytic alpha-stable noise modeling in a poisson
    field of interferers or scatterers,” IEEE Trans. Signal Process., vol. 46,
    no. 6, pp. 1601–1611, 1998.
    [16] P. G. Georgiou, P. Tsakalides, and C. Kyriakakis, “Alpha-stable modeling
    of noise and robust time-delay estimation in the presence of impulsive
    noise,” IEEE Trans. on Multimedia,, vol. 1, no. 3, pp. 291–301, 1999.
    [17] Y. Kim and G. Zhou, “Representation of the middleton class-B model by
    symmetric alpha-stable processes and chi-distributions,” in Proc., Fourth
    International Conference on Signal Process., Oct. 1998, pp. 180–183.
    [18] M. Ghosh, “Analysis of the effect of impulse noise on multicarrier and
    single carrier QAM systems,” IEEE Trans. Commun., vol. 44, no. 2, pp.
    145–147, Feb. 1996.
    [19] S. V. Zhidkov, “Impulsive noise suppression in ofdm-based communication
    systems,” IEEE Trans. on Consumer Electronics, vol. 49, no. 4, pp. 944–
    948, Nov. 2003.
    [20] R. S. Blum, R. J. Kozick, and B. M. Sadler, “An adaptive spatial diversity
    receiver for non-Gaussian interference and noise,” IEEE Trans. Signal
    Process., vol. 47, no. 8, pp. 2100–2111, 1999.
    [21] S. A. Kosmopoulos, P. T. Mathiopoulos, and M. D. Gouta, “Fourier-bessel
    error performance analysis and evaluation of M-ary QAM schemes in an
    impulsive noise environment,” IEEE Trans. Commun., vol. 39, no. 3, pp.
    398–404, 1991.
    [22] R. Pighi, M. Franceschini, G. Ferrari, and R. Raheli, “Fundamental performance
    limits for plc systems impaired by impulse noise,” in Proc. IEEE
    International Symp. on Power Line Communications and Its Applications,
    2006, pp. 277–282.
    [23] X. Wang and H. Poor, “Robust multiuser detection in non-Gaussian channels,”
    IEEE Trans. Signal Process., vol. 47, no. 2, pp. 289–305, Feb. 1999.
    [24] H. V. Poor and M. Tanda, “Multiuser detection in flat fading non-Gaussian
    channels,” IEEE Trans. Commun., vol. 50, no. 11, pp. 1769–1777, 2002.
    111
    [25] M. Flury and J.-Y. Le Boudec, “Interference mitigation by statistical interference
    modeling in an impulse radio uwb receiver,” in IEEE International
    Conference on Ultra-Wideband, 2006, pp. 393–398.
    [26] M. Mushkin and I. Bar-David, “Capacity and coding for the Gilbert-Elliott
    channels,” IEEE Trans. Inf. Theory, vol. 35, no. 6, pp. 1277–1290, Nov.
    1989.
    [27] L.Wilhelmsson and L. B. Milstein, “On the effect of imperfect interleaving
    for the Gilbert-Elliott channel,” IEEE Trans. Commun., vol. 47, no. 5, pp.
    681–688, 1999.
    [28] J. Garcia-Frias and J. D. Villasenor, “Turbo decoding of Gilbert-Elliot
    channels,” IEEE Trans. Commun., vol. 50, no. 3, pp. 357–363, 2002.
    [29] J. Mitra and L. Lampe, “Convolutionally coded transmission over Markov-
    Gaussian channels: Analysis and decoding metrics,” IEEE Trans. Commun.,
    vol. 58, no. 7, pp. 1939–1949, July 2010.
    [30] S. Haykin, “Cognitive radio: Brain-empowered wireless communications,”
    IEEE J. Sel. Areas Commun., vol. 23, no. 2, pp. 201–220, Feb. 2005.
    [31] Z. Chen, C.-X. Wang, X. Hong, J. Thompson, S. Vorobyov, and X. Ge, “Interference
    modeling for cognitive radio networks with power or contention
    control,” in Proc. IEEE Wireless Commun. and Network. Conf. (WCNC),
    Apr. 2010, pp. 1–6.
    [32] P. Pinto and M. Win, “Communication in a Poisson field of interferers,” in
    Proc. 40th Annual Conference on Information Sciences and Systems, Mar.
    2006, pp. 432–437.
    [33] G. Yue, “Antijamming coding techniques,” IEEE Signal Process Mag.,
    vol. 25, no. 6, pp. 35–45, 2008.
    [34] F. Moghimi, A. Nasri, and R. Schober, “Adaptive Lp-norm spectrum sensing
    for cognitive radio networks,” IEEE Trans. Commun., vol. 59, no. 7,
    pp. 1934–1945, July 2011.
    [35] B. Sklar, Digital communications. Prentice Hall PTR New Jersey, 2001,
    vol. 1099.
    [36] W. Ryan and S. Lin, Channel codes: classical and modern. Cambridge
    University Press, 2009.
    [37] R. W. Hamming, “Error detecting and error correcting codes,” Bell System
    technical journal, vol. 29, no. 2, pp. 147–160, 1950.
    [38] P. Elias, “Error-free coding,” IEEE Trans. on Inf. Theory, vol. 4, no. 4, pp.
    29–37, 1954.
    [39] F. Jelinek, “Fast sequential decoding algorithm using a stack,” IBM Journal
    of Research and Development, vol. 13, no. 6, pp. 675–685, 1969.
    [40] G. D. Forney Jr and E. Bower, “A high-speed sequential decoder: Prototype
    design and test,” IEEE Trans. on Commun., vol. 19, no. 5, pp. 821–835,
    1971.
    [41] J. L. Massey, “Threshold decoding,” DTIC Document, Tech. Rep., 1963.
    [42] A. J. Viterbi, “Error bounds for convolutional codes and an asymptotically
    optimum decoding algorithm,” IEEE Trans. on Inf. Theory, vol. 13, no. 2,
    pp. 260–269, 1967.
    [43] G. D. Forney Jr, “The viterbi algorithm,” Proc. IEEE, vol. 61, no. 3, pp.
    268–278, 1973.
    [44] D. Forney Jr et al., “Convolutional codes II. maximum-likelihood decoding,”
    Inf. and control, vol. 25, no. 3, pp. 222–266, 1974.
    [45] G. A. Berrou, Claude and P. Thitimajshima, “Near Shannon limit error
    correcting coding and decoding: Turbo-codes,” IEEE Proc. of the Int. conf.
    on commun., pp. 1064–1070, May 1993.
    [46] C. Berrou and A. Glavieux, “Near optimum error correcting coding and decoding:
    Turbo-codes,” IEEE Trans. on commun., vol. 44, no. 10, pp. 1261–
    1271, 1996.
    [47] M. C. Valenti, “Iterative detection and decoding for wireless communications,”
    Ph.D. dissertation, 1999.
    [48] L. C. Perez, J. Seghers, and D. J. Costello, “A distance spectrum interpretation
    of turbo codes,” IEEE Trans. on Inf. Theory, vol. 42, no. 6, pp.
    1698–1709, 1996.
    [49] O. F. Acikel and W. E. Ryan, “Punctured turbo-codes for bpsk/qpsk channels,”
    IEEE Trans. on commun., vol. 47, no. 9, pp. 1315–1323, 1Sep. 999.
    [50] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear
    codes for minimizing symbol error rate,” IEEE Trans. on Inf. Theory,
    vol. 20, no. 2, pp. 284–287, Mar. 1974.
    [51] K. Blackard, T. Rappaport, and C. Bostian, “Measurements and models
    of radio frequency impulsive noise for indoor wireless communications,”
    IEEE J. Sel. Areas Commun., vol. 11, no. 7, pp. 991–1001, Sep. 1993.
    [52] H. Gu, I. Song, S. Yoon, and Y. Hee, “A class of spectrum-sensing schemes
    for cognitive radio under impulsive noise circumstances: Structure and
    performance in non-fading and fading environments,” IEEE Trans. Veh.
    Technol., vol. 59, no. 9, pp. 4322–4339, Nov. 2010.
    [53] H. Meng, Y. Guan, and S. Chen, “Modeling and analysis of noise effects
    on broadband power-line communications,” IEEE Trans. Power Delivery,
    vol. 20, no. 2, pp. 630–637, April 2005.
    [54] C. Tepedelenlioglu and P. Gao, “On diversity reception over fading channels
    with impulsive noise,” IEEE Trans. Veh. Technol., vol. 54, no. 6, pp.
    2037–2047, Nov. 2005.
    [55] S. Miyamoto, M. Katayama, and N. Morinaga, “Performance analysis of
    QAM systems under class-A impulsive noise environment,” IEEE Trans.
    Electromagn. Compat., vol. 37, no. 2, pp. 260–267, May 1995.
    [56] D. Middleton, “Statistical-physical models of electromagnetic interference,”
    IEEE Trans. Electromagn. Compat., vol. 19, no. 3, pp. 106–127,
    Aug. 1977.
    [57] T. Trump and I. Muursepp, “An energy detector for spectrum sensing in
    impulsive noise environment,” in Proc. IEEE 22nd Int. Symp. on Personal,
    Indoor and Mobile Radio Commun., Sept. 2011, pp. 467–471.
    [58] M. Nassar, P. Schniter, and B. L. Evans, “A factor graph approach to
    joint OFDM channel estimation and decoding in impulsive noise environments,”
    arXiv:1306.1851, June 2013.
    [59] J. Lee and C. Tepedelenlioglu, “Space-time coding over fading channels
    with stable noise,” IEEE Trans. Veh. Technol., vol. 60, no. 7, pp. 3169–
    3177, Sept. 2011.
    [60] D.-F. Tseng, Y. Han, W. Mow, P.-N. Chen, J. Deng, and A. Vinck, “Robust
    decoding for convolutionally coded systems impaired by memoryless impulsive
    noise,” IEEE Trans. Commun., vol. 61, no. 11, pp. 4640–4652, Sep.
    2013.
    [61] J. Mitra and L. Lampe, “Robust decoding for channels with impulse noise,”
    in Proc. IEEE Global Telecommun. Conf., Dec. 2006, pp. 1–6.
    [62] R. Pighi, M. Franceschini, G. Ferrari, and R. Raheli, “Fundamental performance
    limits of communications systems impaired by impulse noise,”
    IEEE Trans. Commun., vol. 57, no. 1, pp. 171–182, Jan. 2009.
    [63] D. Fertonani and G. Colavolpe, “A simplified metric for soft-output detection
    in the presence of impulse noise,” in Proc. IEEE International Symp.
    on Power Line Communications and Its Applications, Mar. 2007, pp. 121–
    126.
    [64] L. Garth and H. V. Poor, “Narrowband interference suppression in impulsive
    channels,” IEEE Trans. on Aerospace and Electronic Systems, vol. 28,
    no. 1, pp. 15–34, 1992.
    [65] D. Umehara, H. Yamaguchi, and Y. Morihiro, “Turbo decoding in impulsive
    noise environment,” in Proc. IEEE Global Telecommun. conf., vol. 1,
    2004, pp. 194–198.
    [66] D.-F. Tseng, Y. Han, W. Mow, L.-C. Chang, and A. Vinck, “Robust clipping
    for OFDM transmissions over memoryless impulsive noise channels,”
    IEEE Commun. Letters, vol. 16, no. 7, pp. 1110–1113, July 2012.
    [67] D. Fertonani and G. Colavolpe, “On reliable communications over channels
    impaired by bursty impulse noise,” IEEE Trans. Commun., vol. 57,
    no. 7, pp. 2024–2030, July 2009.
    [68] N. Merhav, G. Kaplan, A. Lapidoth, and S. Shamai Shitz, “On information
    rates for mismatched decoders,” IEEE Trans. on Inf. Theory, vol. 40, no. 6,
    pp. 1953–1967, Nov. 1994.
    [69] T. Li, W.-H. Mow, V. K. N. Lau, M. Siu, R. Cheng, and R. Murch, “Robust
    joint interference detection and decoding for OFDM-based cognitive
    radio systems with unknown interference,” IEEE J. Sel. Areas Commun.,
    vol. 25, no. 3, pp. 566–575, Apr. 2007.
    [70] J. Mitra and L. Lampe, “Coded narrowband transmission over noisy powerline
    channels,” in Proc. IEEE International Symp. on Power Line Communications
    and Its Applications, Apr. 2009, pp. 143–148.
    [71] D. Fertonani and G. Colavolpe, “Theoretical limits and practical detection
    schemes for Markovian-Gaussian channels,” in Proc. IEEE International
    Conference on Communications, 2008, pp. 961–965.
    [72] C. Pimentel and L. Rego, “Analysis of soft decision decoding of interleaved
    convolutional codes over burst channels,” in Proc. IEEEWireless Commun.
    and Network. Conf. (WCNC), 1999, pp. 1090–1094.
    [73] A. J. Goldsmith and P. P. Varaiya, “Capacity, mutual information, and coding
    for finite-state Markov channels,” IEEE Trans. on Inf. Theory, vol. 42,
    no. 3, pp. 868–886, 1996.
    [74] J. Garcia-Frias and J. D. Villasenor, “Turbo decoders for Markov channels,”
    IEEE Commun. Letters, vol. 2, no. 9, pp. 257–259, 1998.
    [75] S. Miyamoto, M. Katayama, and N. Morinaga, “Performance analysis of
    qam systems under class-A impulsive noise environment,” IEEE Trans.
    Electromagn. Compat., vol. 37, no. 2, pp. 260–267, May 1995.
    [76] J. Haring and A. H. Vinck, “Performance bounds for optimum and suboptimum
    reception under class-A impulsive noise,” IEEE Trans. on Commun.,
    vol. 50, no. 7, pp. 1130–1136, 2002.
    [77] A. Viterbi and J.Omura, Principles of Digital Communication and Coding.
    New York: McGrew-Hill, 1979.
    [78] M. Fossorier and S. Lin, “Differential trellis decoding of convolutional
    codes,” IEEE Trans. Inf. Theory, vol. 46, no. 3, pp. 1046–1053, May 2000.
    [79] H.-L. Lou, “Implementing the viterbi algorithm,” IEEE Signal Process.
    Mag., vol. 12, no. 5, pp. 42–52, Sep. 1995.
    [80] G. Pottie and D. Taylor, “A comparison of reduced complexity decoding
    algorithms for trellis codes,” IEEE J. Sel. Areas Commun., vol. 7, no. 9,
    pp. 1369–1380, Dec. 1989.
    [81] I. Chatzigeorgiou, M. Rodrigues, I. Wassell, and R. Carrasco, “Punctured
    binary turbo-codes with optimized performance,” in IEEE veh. technol.
    CONFERENCE, vol. 62, no. 3, 2005, p. 1965.
    [82] O. Joeressen and H. Meyr, “Terminating the trellis of turbo-codes,” Electronics
    Letters, vol. 30, no. 16, pp. 1285–1285, 1994.
    [83] D. Divsalar and F. Pollara, “Turbo codes for deep-space communications,”
    TDA progress report, vol. 42, p. 120, 1995.
    [84] F. Mengistu, D.-F. Tseng, Y. Han, M. Abera, and L.-C. Chang, “A robust decoding
    scheme for convolutionally coded transmission through a Markov
    Gaussian channel,” IEEE Trans. Veh. Technol., Mar. 2014.
    [85] B. Sklar, “Maximum a posteriori decoding of turbo codes,” Digital Communications:
    Fundamentals and Applications,, 2008.
    [86] D. Bauso and R. Pesenti, “Generalized person-by-person optimization in
    team problems with binary decisions,” in Proc. IEEE American Control
    Conf., June 2008, pp. 717–722.
    [87] B. Seyfe and S. Valaee, “A new choice of penalty function for robust multiuser
    detection based on M-estimation,” IEEE Trans. Commun., vol. 53,
    no. 2, pp. 224–227, Mar. 2005.

    無法下載圖示 全文公開日期 2019/07/02 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2019/07/02 (國家圖書館:臺灣博碩士論文系統)
    QR CODE