簡易檢索 / 詳目顯示

研究生: 潘品嘉
Pin-Chia Pan
論文名稱: 無轉軸偵測元件的同步磁阻電動機磁場導向控制驅動系統的研製
Design and Implementation of a Sensorless SynRM Field-Oriented Control Drive System
指導教授: 劉添華
Tian-Hua Liu
口試委員: 廖聰明
Chaug-Ming Liaw
李永勳
Yuang-Shung Lee
楊勝明
Sheng-Ming Yang
劉益華
Yi-Hua Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 96
中文關鍵詞: 同步磁阻馬達無轉軸偵測元件控制高頻注入法適應性步階回歸控制器
外文關鍵詞: synchronous reluctance motor, sensorless control, high-frequency injection method, adaptive backstepping controller
相關次數: 點閱:344下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

同步磁阻電動機因為低廉的製造成本及不需使用永久磁鐵,所以逐漸獲得市場關注。本文將探討利用高頻注入法的無轉軸偵測元件控制,並結合適應性步階回歸控制器的驅動系統。利用無轉軸偵測元件控制可以增加系統強健度,且適應性回歸控制器能得到較佳的系統響應。本文將討論同步磁阻馬達與磁場導向控制,所提出的控制系統結合硬體系統及數位訊號處理器。為了驗證所提出系統的性能,文中呈現的實測結果與理論分析甚為符合。說明所提系統具有甚佳的暫態響應、加載響應,及追蹤響應。


Synchronous Reluctance Motor (SynRM) has drawn worldwide attention due to its low production cost and no magnetic material. This thesis aims at the sensorless control using high-frequency injection method combined with adaptive backstepping controller. As a result, the system is robust, and the adaptive backstepping controller provides better responses. Also, the principle of SynRM and field-oriented control are discussed. The proposed control system is realized by a digital signal processor and some hardware circuits. To verify the performance of the proposed system, several experimental results are shown. The results can validate the theoretical analysis and show the proposed system having good transient responses, load responses, and tracking responses.

ABSTRACT iii 中文摘要 iv DEDICATION v ACKNOWLEDGEMENT vi NOMENCLATURE vii TABLE OF CONTENTS ix LIST OF FIGURES xii LIST OF TABLES xv CHAPTER I INTRODUCTION 1 1.1 Background 1 1.2 Literature Review 2 1.3 Contributions of this Thesis 4 1.4 Outline of the Thesis 5 CHAPTER II SYNCHRONOUS RELUCTANCE MOTOR 6 2.1 Introduction 6 2.2 Mathematical Model 10 2.3 High Frequency Model 14 2.4 Parameter Verification under High Frequency Condition 16 CHAPTER III FIELD-ORIENTED CONTROL OF SynRM 18 3.1 Introduction 18 3.2 Four-Quadrant Control 20 3.3 Closed-loop Speed Control 21 CHAPTER IV ROTOR POSITION ESTIMATION 23 4.1 Introduction 23 4.2 Sensorless Method using High Frequency Injection 25 4.2.1 Basic Principle 25 4.2.2 The Proposed Rotor Estimating Method 27 4.2.3 Closed-loop Sensorless Drive System 34 CHAPTER V CONTROLLER DESIGN 37 5.1 Introduction 37 5.2 Current Control 38 5.3 Adaptive Backstepping Speed Control 40 CHAPTER VI IMPLEMENTATION 47 6.1 Introduction 47 6.2 Hardware 48 6.2.1 Three-phase Inverter Circuit 48 6.2.2 Current Sensing Circuit 50 6.2.3 Voltage Sensing Circuit 51 6.2.4 Noise Reduction Circuit of the Encoder 53 6.2.5 Interface Circuit 54 6.3 Digital Signal Processor 55 6.4 Software Flowchart 57 6.4.1 Main Program 57 6.4.2 Interrupt Programs 58 CHAPTER VII EXPERIMENTAL RESULTS 63 7.1 Introduction 63 7.2 Experimental Results 65 CHAPTER VIII CONCLUSIONS 91 8.1 Conclusions 91 8.2 Future Research 91 REFERENCE 93

[1] H. A. Zarchi, J. Soltani, and G. A. Markadeh, “Adaptive input–output feedback-linearization-based torque control of synchronous reluctance motor without mechanical sensor,” IEEE Trans. Ind. Electron., vol. 57, no. 1, pp. 375-384, Jan. 2010.
[2] A. Ghaderi and T. Hanamoto, “Wide-speed-range sensorless vector control of synchronous reluctance motors based on extended programmable cascaded low-pass filters,” IEEE Trans. Ind. Electron., vol. 58, no. 6, pp. 2322-2333, Jun. 2011
[3] M.-Y. Wei, T.-H. Liu, and C.-K. Lin, “Design and implementation of a passivity-based controller for sensorless synchronous reluctance motor drive systems,” IET Electr. Power Appl., vol. 5, iss. 4, pp. 335–349, 2011
[4] S. Ichikawa, M. Tomita, S. Doki, and S. Okuma, “Sensorless control of synchronous reluctance motors based on extended EMF models considering magnetic saturation with online parameter identification,” IEEE Trans. Ind. Applicat., vol. 42, no. 5, pp. 1264-1274, Sep./Oct. 2006
[5] T. Tuovinen, M. Hinkkanen, and J. Luomi, “Analysis and design of a position observer with resistance adaptation for synchronous reluctance motor drives,” IEEE Trans. Ind. Applicat., vol. 49, no. 1, pp. 66-73, Jan./Feb. 2013
[6] M.-Y. Wei and T.-H. Liu, “A high-performance sensorless position control system of a synchronous reluctance motor using dual current-slope estimating technique,” IEEE Trans. Ind. Electron., vol. 59, no. 9, pp. 3411-3426, Sep. 2012
[7] H. W. D. Kock, M. J. Kamper, and R. M. Kennel, “Anisotropy comparison of reluctance and PM synchronous machines for position sensorless control using HF carrier injection,” IEEE Trans. Power Electron., vol. 24, no. 8, pp. 1905-1913, Aug. 2009
[8] R. Morales-Caporal and M. Pacas, “Encoderless predictive direct torque control for synchronous reluctance machines at very low and zero speed,” IEEE Trans. Ind. Electron., vol. 55, no. 12, pp. 4408-4416, Dec. 2008
[9] R. Morales-Caporal and M. Pacas, “Suppression of saturation effects in a sensorless predictive controlled synchronous reluctance machine based on voltage space phasor injections,” IEEE Trans. Ind. Electron., vol. 58, no. 7, pp. 2809-2817, Jul. 2011
[10] T. Tuovinen and M. Hinkkanen, “Signal-injection-assisted full-order observer with parameter adaptation for synchronous reluctance motor drives,” IEEE Trans. Ind. Applicat., vol. 50, no. 5, pp. 3392-3402, Sep./Oct. 2014
[11] T. Tuovinen and M. Hinkkanen, “Adaptive full-order observer with high-frequency signal injection for synchronous reluctance motor drives,” IEEE Trans. Emerg. Sel. Topics Power Electron. vol. 2, no. 2, pp. 181-189, Jun. 2014
[12] A. Consoli, G. Scarcella, G. Scelba, A. Testa, and D. A. Triolo, “Sensorless rotor position estimation in synchronous reluctance motors exploiting a flux deviation approach,” IEEE Trans. Ind. Applicat., vol. 43, no. 5, pp. 1266-1273, Sep./Oct. 2007
[13] J.-L. Chen and T.-H. Liu, “An IPMSM position control system using high frequency injection sensorless technique,” IEEE IES-2012, 2012, pp. 3676-3681
[14] A. Piippo, M. Hinkkanen, and J. Luomi, “Analysis of an adaptive observer for sensorless control of interior permanent magnet synchronous motors,” IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 570-576, Feb. 2008
[15] Y. A.-R. I. Mohamed and E. F. El-Saadany, “A current control scheme with an adaptive internal model for torque ripple minimization and robust current regulation in PMSM drive systems,” IEEE Trans. Energy Convers., vol. 23, no. 1, pp. 92-100, Mar. 2008.
[16] T.-H. Liu and H.-H. Hsu, “Adaptive controller design for a synchronous reluctance motor drive system with direct torque control,” IET Electr. Power Appl., vol. 1, no. 5, pp. 815-824, Sep. 2007
[17] M. N. Uddin and J. Lau, “Adaptive-backstepping-based design of a nonlinear position controller for an IPMSM servo drive,” Can. J. Elect. Comput. Eng., vol. 32, no. 2, pp. 97-102, Spring 2007
[18] M. Morawiec, “The adaptive backstepping control of permanent magnet synchronous motor supplied by current source inverter,” IEEE Trans. Ind. Informat., vol. 9, no. 2, pp. 1047-1055, May 2013
[19] K.-H. Kim, “Model reference adaptive control-based adaptive current control scheme of a PM synchronous motor with an improved servo performance,” IET Electr. Power Appl., vol. 3, no. 1, pp. 8-18, 2009
[20] S.-H. Li and Z.-G. Liu, “Adaptive speed control for permanent-magnet synchronous motor system with variations of load inertia,” IEEE Trans. Ind. Electron., vol. 56, no. 8, pp. 3050-3059, Aug. 2009
[21] S.-H. Li and H. Gu, “Fuzzy adaptive internal model control schemes for PMSM speed-regulation system,” IEEE Trans. Ind. Informat., vol. 8, no. 4, pp. 767-779, Nov. 2012
[22] H. H. Choi, V. Q. Leu, Y.-S. Choi and J.-W. Jung, “Adaptive speed controller design for a permanent magnet synchronous motor,” IET Electr. Power Appl., vol. 5, iss. 5, pp. 457–464, 2011
[23] M.-Y. Wei and T.-H. Liu, “Design and implementation of an online tuning adaptive controller for synchronous reluctance motor drives,” IEEE Trans. Ind. Electron., vol. 60, no. 9, pp. 3644-3657, Sep. 2013
[24] S. J. Underwood and I. Husain, “Online parameter estimation and adaptive control of permanent-magnet synchronous machines,” IEEE Trans. Ind. Electron., vol. 57, no. 7, pp. 2435-2443, Jul. 2010
[25] Y. A.-R. I. Mohamed, “Adaptive self-tuning speed control for permanent-magnet synchronous motor drive with dead time,” IEEE Trans. Energy Convers., vol. 21, no. 4, pp. 855-862, Dec. 2006
[26] D. A. Staton, T. J. E. Miller, and S. E. Wood, “Maximising the saliency ratio of the synchronous reluctance motor,” IEE PROCEEDINGS-B, vol. 140, no. 4, pp. 249-259, Jul. 1993
[27] A. J. O. Cruickshank, R. W. Menzies, and A. F. Anderson, “Axially laminated anisotropic rotors for reluctance motors,” IEE PROC., vol. 113, no. 12, pp. 2058-2060, Dec. 1966
[28] A. Vagati, A. Canova, M. Chiampi, M. Pastorelli, and M. Repetto, “Improvement of Synchronous Reluctance Motor Design through Finite-Element Analysis,” IEEE IAS-1999, 1999, pp. 862-871
[29] M. T. Lin and T. H. Liu, “Sensorless synchronous reluctance drive with standstill starting,” IEEE Trans. Aerosp. Electron. Syst., vol. 36, no.4, pp. 1232-1241, Oct. 2000.
[30] C. G. Chen, T. H. Liu, M. T. Lin and C. A. Tai, “Position control of a sensorless synchronous reluctance motor,” IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 15-25, Feb. 2004.
[31] S. Ichikawa, M. Tomita, S. Doki and S. Okuma, “Sensorless control of synchronous reluctance motors based on extended EMF models considering magnetic saturation with online parameter identification,” IEEE Trans. Ind. Applicat., vol. 42, no. 5, pp. 1264-1274, Sep./Oct. 2006.
[32] G. Foo and M. F. Rahman, “Sensorless direct torque and flux-controlled IPM synchronous motor drive at very low speed without signal injection,” IEEE Trans. Ind. Electron., vol. 57, no. 1, pp. 395-403, Jan. 2010.
[33] A. Ghaderi and T. Hanamoto, “Wide-speed-range sensorless vector control of synchronous reluctance motors based on extended programmable cascaded low-pass filters,” IEEE Trans. Ind. Electron., vol. 58, no. 6, pp. 2322-2333, Jun. 2011.
[34] B. Zigmund, A. A. Terlizzi, X. del Toro Garcia, R. Pavlanin, and L. Salvatore, “Experimental evaluation of PI tuning techniques for field oriented control of permanent magnet synchronous motors,” AEEE, vol. 5, iss.1, pp. 114-119
[35] I. Kanellakopoulos, P. V. Kokotovic, and A. S. Morse, “Systematic design of adaptive controllers for feedback linearizable systems,” IEEE Trans. Autom. Control, vol. 33, no. 11, pp. 1241-1253, Nov. 1991
[36] M. Krsti6, I. Kanellakopoulos, and P.V. Kokotovi6, “Adaptive nonlinear control without overparametrization,” Systems & Control Letters-19, pp. 177-185, 1992
[37] S.-C. Agarlita, I. Boldea, and F. Blaabjerg, “High-frequency-injection-assisted ‘active-flux’-based sensorless vector control of reluctance synchronous motors, with experiments from zero speed,” IEEE Trans. Ind. Applicat., vol. 48, no. 6, pp. 1931-1939, Nov./Dec. 2012

無法下載圖示 全文公開日期 2018/01/29 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 2018/01/29 (國家圖書館:臺灣博碩士論文系統)
QR CODE