簡易檢索 / 詳目顯示

研究生: 徐祥輔
Hsiang-Fu Hsu
論文名稱: 利用微流體雷射繞射晶片系統計數髓質抑制細胞應用於臨床肺癌患者發炎評估
Myeloid-derived suppressor cells counting with fluidic diffraction chip by laser systems for inflammation evaluation of lung cancer patients
指導教授: 陳建光
Jem-Kun Chen
口試委員: 張棋榕
Chi-Jung Chang
鄭智嘉
Chih-Chia Cheng
周百謙
Pai-Chien Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 242
中文關鍵詞: 肺癌髓質抑制細胞微流體繞射晶片雷射檢測
外文關鍵詞: Lung cancer, Myeloid derived suppressor cell, Microfluidic diffraction chip, Laser detection system
相關次數: 點閱:232下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

肺癌本身為詭譎多變的腫瘤型態,有精準治療如標靶治療與免疫療法的協助,不可避免腫瘤的惡化,目前證據指出,針對治療的系統性反應,特別是骨髓釋放出之髓質抑制細胞會是可能關鍵之一,因此本研究透過流式細胞儀進行髓質抑制細胞之相關定性定量分析。
材料部分使用微流體繞射晶片,透過奈米壓印技術轉印圖案,製作圖案化聚對苯二甲酸乙二酯(Polyethylene terephthalate,PET),具有一維線型及二維柱型奈米陣列,表面陣列構成相位式光柵,可使雷射光產生不同程度的繞射,分別製作8種不同高度之圖案,後續比較檢測靈敏度差異;透過表面修飾高分子及抗體,抗體分別修飾CD11b及CD14以完成二不同抗體晶片,透過流體系統捕捉CD11b+及CD14+之細胞,透過晶片上特殊的奈米陣列結構搭配雷射系統進行定量分析,以到簡單檢測及定量之效果。
最後驗證雷射系統與流式細胞儀的差異性,我們期望藉由髓質抑制細胞在肺癌病患免疫抑制的研究,我們可以找到對於肺癌治療有效與否之臨床預測因子,協助設計適合癌症病患表現型的精準治療。


Lung cancer is a treacherous and changeable tumor type during treatment. Even with the assistance of precision treatments such as targeted therapy and immunotherapy, it is inevitable that the tumor will still be worsened. The current evidence points to the systemic response to treatment, especially bone marrow released cells, may indicate the responses to treatment. In this study, the MDSCs are analyzed by flow cytometry.
We use a microfluidic diffraction chip, and manufacture the nanopattern through nanoimprinting technology to make a patterned polyethylene terephthalate (PET), which is one-dimensional linear and two-dimensional pillar nanoarrays. As a phase grating, which can make the laser light diffraction in varying degrees. There are eight size of different heights can be manufactured respectively, and the difference in detection sensitivity can be determined later. The surface is modified with polymers and antibodies, and the antibodies are modified CD11b and CD14 two chips, respectively . Single CD11b+ and CD14+ cells will be captured by two different chips through a fluid system. Quantitative analysis through a special nanoarray structure on the chip with a laser system, so as to achieve detection simple and fast.
Finally, to verify how difference of cell counting between the laser system and flow cytometry, to validate the new method. we hope to
IV
generate more genuine ideas on the role of MDSCs in the evolution changes during lung cancer treatment with less time and labor consuming process. These findings will hope to investigate the potential precision treatment for patients.

目錄 摘要 II ABSTRACT III 致謝 V 目錄 VIII 圖目錄 XVII 表目錄 XXVIII 1. 緒論 1 1.1. 研究背景 1 1.2. 研究動機與目的 6 2. 文獻回顧與實驗理論 9 2.1.微影及蝕刻製程 9 2.2.光柵效應 11 2.2.1.光柵現象 11 2.2.2. 相位式光栅的零階繞射與繞射效率 14 2.3. 奈米壓印 18 2.4. 雷射系統檢測 20 2.5. 自組裝單分子層 22 2.5.1.硫醇自組裝單分子層 23 2.5.2.矽烷基自組裝單分子層 24 2.6.共價鍵固定法(EDC/NHS reaction) 25 2.7.海藻酸(Alginic acid) 27 2.8.重組蛋白與抗體 29 2.9.髓質抑制細胞(Myeloid-derived suppressor cell, MDSCs) 31 3. 儀器原理 33 3.1.高解析度場發射掃描式電子顯微鏡(Field-emission scanning electron microscope,FE-SEM) 33 3.2.原子力顯微鏡(Atomic Force Microscope, AFM) 35 3.3. X射線光電子能譜儀 (X-ray photoelectron spectroscopy,XPS) 40 3.4.傅立葉轉換紅外線光譜儀 (Fourier-Transform Infrared Spectroscopy, FT-IR) 43 3.5.接觸角量測儀 (Contact Angle Meter) 48 3.6. 可見光紫外光分光光譜儀 (Ultraviolet-visible spectroscopy,UV-vis) 50 3.7. 雷射掃描式共軛焦顯微鏡 (Laser scanning confocal microscope,LSCM) 53 3.8.光譜式流式細胞儀(Spectral Flow Cytometry) 55 4. 實驗流程與方法 59 4.1. 實驗流程圖 59 4.2. 實驗藥品 60 4.3. 實驗儀器 63 4.4. 實驗步驟 66 4.4.1.光罩製作 66 4.4.1.1光罩圖案設計 66 4.4.1.2.光罩製作 67 4.4.2.微影蝕刻製程製備陣列圖案矽晶片模具 67 4.4.2.1.清洗製程(Clean-SC-1) 68 4.4.2.2.表面預處理 68 4.4.2.3.光阻塗佈(Spin coating) 69 4.4.2.4.軟烤(Soft Bake) 69 4.4.2.5.曝光前處理 70 4.4.2.6.曝光(Exposure) 70 4.4.4.7.顯影前處理 71 4.4.2.8.顯影(Development) 72 4.4.2.9.蝕刻(Etch) 72 4.4.3.圖案化矽晶片模具奈米壓印於PET薄膜 74 4.4.4.PET薄膜晶片表面修飾 74 4.4.4.1. 表面親水處理(PET-OH) 74 4.4.4.2.製備自組裝層(PET-APTES) 75 4.4.4.3.表面改植海藻酸(PET-ALG) 76 4.4.4.4.表面改質Protein G (PET-PG) 77 4.4.4.5.表面改質Antibody (PET-Antibody) 78 4.4.4.6.表面Blocking BSA(PET-Modification) 79 4.4.5.微流體晶片(PET-Microfluidic chip)製作 80 4.4.5.1.流道上蓋製作 80 4.4.5.2.微流體晶片封裝 82 4.4.6.流體管線架設 82 4.4.7.雷射分析儀系統架設 85 4.4.8.材料物理光學特性 88 4.4.8.1.雷射分析儀測量材料繞射強度 88 4.4.8.2.紫外-可見光光譜儀測量材料光學性質 88 4.4.9受試者全血檢體處理分析 89 4.4.9.1.外周血單核細胞(Peripheral blood mononuclear cell,PBMC)處理 89 4.4.9.2.PBMC細胞計數 91 4.4.10.雷射分析儀細胞檢測與基材尺寸選定 92 4.4.10.1.接種細胞至材料上 94 4.4.10.2.測量雷射繞射能量定基材尺寸 94 4.4.11.雷射分析儀檢量線製作 95 4.4.12.PBMC流式細胞儀分析 96 4.4.12.1.PBMC樣品前處理 96 4.4.12.2.流式細胞儀上樣前設定 97 4.4.12.3.螢光染劑濃度優化 98 4.4.12.4.樣品流式細胞儀測定 99 4.4.13.微流體晶片抓取MDSC同步進行雷射檢測 100 4.4.14.雷射掃描式共軛焦顯微鏡拍攝 101 4.4.14.1.細胞試片處理 101 4.4.15.共軛焦顯微鏡拍攝 103 4.4.16.掃描式電子顯微鏡生物試片製備 104 5. 結果與討論 105 5.1. 光罩設計與製作 105 5.2.圖案化表面分析 106 5.2.1.微影蝕刻製程圖案化一維二維奈米陣列 106 5.2.2.圖案化矽晶片模具奈米壓印於PET薄膜 113 5.3.圖案化奈米陣列光學性質 121 5.3.1.材料繞射現象 121 5.3.1.1圖案化材料光柵繞射 121 5.3.1.2.雷射繞射 122 5.3.1.3微流體晶片光柵效應 123 5.3.2.雷射分析儀測量材料繞射強度 123 5.3.3.紫外-可見光光譜儀測量材料光學性質 125 5.4.APTES與ALG接枝於PET之分析 128 5.4.1.接觸角親疏水測試 128 5.4.2.材料修飾表面形貌分析 130 5.4.2.1.單分子層表面分析 130 5.4.2.2.高分子接枝表面型態分析 131 5.4.3.XPS能譜圖分析 134 5.4.3.1.PET改質後之XPS Wide Scan分析 134 5.4.3.2.N1s能譜分析 135 5.4.3.3.Si2p能譜分析 136 5.4.3.4.C1s能譜分析 137 5.4.3.5.O1s能譜分析 138 5.4.4.FTIR光譜分析 139 5.5.受試者樣品測定 140 5.5.1.PBMC分離處理 140 5.5.2.PBMC計數 141 5.6.雷射分析儀選定基材尺寸 142 5.7.雷射分析儀細胞檢量線製作 147 5.8.流式細胞儀分析樣品 153 5.8.1.流式細胞儀染劑濃度優化 153 5.8.2.受試樣品測定 161 5.9.檢體之MDSC雷射分析儀定量分析 177 5.10.材料捕捉細胞形貌分析 182 5.10.1.雷射掃描式共軛焦顯微鏡細胞觀測 182 5.10.2.掃描式電子顯微鏡細胞觀測 185 5.11.流式細胞儀及雷射分析儀實驗結果比較 186 6.結論 191 參考文獻 193

1. 衛生福利部國民健康署.,中華民國 108 年癌症登記報告.2021
2. Jain, A. S.; Prasad, A.; Pradeep, S.; Dharmashekar, C.; Achar, R. R.; Ekaterina, S.; Victor, S.; Amachawadi, R. G.; Prasad, S. K.; Pruthvish, R., Everything old is new again: drug repurposing approach for non-small cell lung cancer targeting MAPK signaling pathway. Frontiers in Oncology 2021, 4011.
3. Rudin, C. M.; Brambilla, E.; Faivre-Finn, C.; Sage, J., Small-cell lung cancer. Nature Reviews Disease Primers 2021, 7 (1), 1-20.
4. Wang, M.; Herbst, R. S.; Boshoff, C., Toward personalized treatment approaches for non-small-cell lung cancer. Nature medicine 2021, 27 (8), 1345-1356.
5. Planchard, D.; Popat, S.; Kerr, K.; Novello, S.; Smit, E.; Faivre-Finn, C.; Mok, T.; Reck, M.; Van Schil, P.; Hellmann, M., Metastatic non-small cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of Oncology 2018, 29, iv192-iv237.
6. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R. L.; Torre, L. A.; Jemal, A., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians 2018, 68 (6), 394-424.
7. Vanhaver, C.; van der Bruggen, P.; Bruger, A. M., MDSC in mice and men: Mechanisms of immunosuppression in cancer. Journal of clinical medicine 2021, 10 (13), 2872.
8. Vukovic, J., 186P Determination of the number of suppressor cells of myeloid origin in blood and tumor microcirculation in patients with locally advanced and metastatic lung cancer. Annals of Oncology 2021, 32, S1463.
9. Adah, D.; Hussain, M.; Qin, L.; Qin, L.; Zhang, J.; Chen, X., Implications of MDSCs-targeting in lung cancer chemo-immunotherapeutics. Pharmacological research 2016, 110, 25-34.
10. Tavakkoli, M.; Wilkins, C. R.; Mones, J. V.; Mauro, M. J., A novel paradigm between leukocytosis, G-CSF secretion, neutrophil-to-lymphocyte ratio, myeloid-derived suppressor cells, and prognosis in non-small cell lung cancer. Frontiers in Oncology 2019, 9, 295.
11. Bronte, V.; Brandau, S.; Chen, S.; Colombo, M.; Frey, A.; Greten, T.; Mandruzzato, S.; Murray, P.; Ochoa, A.; Ostrand-Rosenberg, S., Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun. 2016; 7: 12150. Epub 2016/07/07: 2016.
12. Gabrilovich, D. I., Myeloid-derived suppressor cells. Cancer immunology research 2017, 5 (1), 3-8.
13. Talmadge, J. E.; Gabrilovich, D. I., History of myeloid-derived suppressor cells. Nature Reviews Cancer 2013, 13 (10), 739-752.
14. Ortiz, M. L.; Lu, L.; Ramachandran, I.; Gabrilovich, D. I., Myeloid-Derived Suppressor Cells in the Development of Lung CancerMDSC and the Development of Lung Cancer. Cancer immunology research 2014, 2 (1), 50-58.
15. Srivastava, M. K.; Zhu, L.; Harris-White, M.; Kar, U.; Huang, M.; Johnson, M. F.; Lee, J. M.; Elashoff, D.; Strieter, R.; Dubinett, S., Myeloid suppressor cell depletion augments antitumor activity in lung cancer. PloS one 2012, 7 (7), e40677.
16. Mandruzzato, S.; Brandau, S.; Britten, C. M.; Bronte, V.; Damuzzo, V.; Gouttefangeas, C.; Maurer, D.; Ottensmeier, C.; van der Burg, S. H.; Welters, M. J., Toward harmonized phenotyping of human myeloid-derived suppressor cells by flow cytometry: results from an interim study. Cancer Immunology, Immunotherapy 2016, 65 (2), 161-169.
17. Yang, Z.; Guo, J.; Weng, L.; Tang, W.; Jin, S.; Ma, W., Myeloid-derived suppressor cells—new and exciting players in lung cancer. Journal of Hematology & Oncology 2020, 13 (1), 1-17.
18. Feng, P.-H.; Lee, K.-Y.; Chang, Y.-L.; Chan, Y.-F.; Kuo, L.-W.; Lin, T.-Y.; Chung, F.-T.; Kuo, C.-S.; Yu, C.-T.; Lin, S.-M., CD14+ S100A9+ monocytic myeloid-derived suppressor cells and their clinical relevance in non–small cell lung cancer. American journal of respiratory and critical care medicine 2012, 186 (10), 1025-1036.
19. Lin, F.-P.; Hsu, H.-L.; Chang, C.-J.; Lu, C.-H.; Chen, J.-K., Isolation and label-free detection of circulating tumour cells by fluidic diffraction chips with a reflective laser beam system. Chemical Engineering Journal 2022, 436, 135206.
20. Hyun, J. K.; Park, J.; Kim, E.; Lauhon, L. J.; Jeon, S., Rational control of diffraction and interference from conformal phase gratings: toward high‐resolution 3D nanopatterning. Advanced Optical Materials 2014, 2 (12), 1213-1220.
21. Thompson, L. F., An introduction to lithography. ACS Publications: 1983.
22. Wu, B.; Kumar, A.; Pamarthy, S., High aspect ratio silicon etch: A review. Journal of applied physics 2010, 108 (5), 9.
23. Palmer, C.; Loewen, E. G., Diffraction grating handbook. 2005.
24. Zernike, F., Phase contrast, a new method for the microscopic observation of transparent objects. Physica 1942, 9 (7), 686-698.
25. Zernike, F., Phase contrast, a new method for the microscopic observation of transparent objects part II. Physica 1942, 9 (10), 974-986.
26. Rogers, J. A.; Paul, K. E.; Jackman, R. J.; Whitesides, G. M., Using an elastomeric phase mask for sub-100 nm photolithography in the optical near field. Applied physics letters 1997, 70 (20), 2658-2660.
27. Rogers, J. A.; Paul, K. E.; Jackman, R. J.; Whitesides, G. M., Generating∼ 90 nanometer features using near-field contact-mode photolithography with an elastomeric phase mask. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 1998, 16 (1), 59-68.
28. Maria, J.; Jeon, S.; Rogers, J. A., Nanopatterning with conformable phase masks. Journal of Photochemistry and Photobiology A: Chemistry 2004, 166 (1-3), 149-154.
29. Goodman, J. W., Introduction to Fourier Optics. Goodman. McGraw-Hill: 1968.
30. Wang, B.; Zhou, C.; Feng, J.; Ru, H.; Zheng, J., Wideband two-port beam splitter of a binary fused-silica phase grating. Applied Optics 2008, 47 (22), 4004-4008.
31. Clausnitzer, T.; Limpert, J.; Zöllner, K.; Zellmer, H.; Fuchs, H.-J.; Kley, E.-B.; Tünnermann, A.; Jupe, M.; Ristau, D., Highly efficient transmission gratings in fused silica for chirped-pulse amplification systems. Applied Optics 2003, 42 (34), 6934-6938.
32. Mokkapati, S.; Beck, F.; Polman, A.; Catchpole, K., Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells. Applied Physics Letters 2009, 95 (5), 053115.
33. Kondo, T.; Matsuo, S.; Juodkazis, S.; Misawa, H., Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals. Applied Physics Letters 2001, 79 (6), 725-727.
34. Shir, D. J.; Nelson, E. C.; Chanda, D.; Brzezinski, A.; Braun, P. V.; Rogers, J. A.; Wiltzius, P., Dual exposure, two-photon, conformal phase mask lithography for three dimensional silicon inverse woodpile photonic crystals. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 2010, 28 (4), 783-788.
35. Shir, D.; Nelson, E.; Chen, Y.; Brzezinski, A.; Liao, H.; Braun, P.; Wiltzius, P.; Bogart, K.; Rogers, J., Three dimensional silicon photonic crystals fabricated by two photon phase mask lithography. Applied Physics Letters 2009, 94 (1), 011101.
36. Shir, D.; Liao, H.; Jeon, S.; Xiao, D.; Johnson, H. T.; Bogart, G. R.; Bogart, K. H.; Rogers, J. A., Three-dimensional nanostructures formed by single step, two-photon exposures through elastomeric Penrose quasicrystal phase masks. Nano letters 2008, 8 (8), 2236-2244.
37. George, M. C.; Nelson, E. C.; Rogers, J. A.; Braun, P. V., Direct fabrication of 3D periodic inorganic microstructures using conformal phase masks. Angewandte Chemie 2009, 121 (1), 150-154.
38. Chanda, D.; Abolghasemi, L.; Herman, P. R., One-dimensional diffractive optical element based fabrication and spectral characterization of three-dimensional photonic crystal templates. Optics Express 2006, 14 (19), 8568-8577.
39. Bita, I.; Choi, T.; Walsh, M. E.; Smith, H. I.; Thomas, E. L., Large‐Area 3D Nanostructures with Octagonal Quasicrystalline Symmetry via Phase‐Mask Lithography. Advanced Materials 2007, 19 (10), 1403-1407.
40. Drégely, D., Optical antennas: nanoscale radiation engineering and enhanced light-matter interaction. 2014.
41. Jeon, S.; Malyarchuk, V.; White, J. O.; Rogers, J. A., Optically fabricated three dimensional nanofluidic mixers for microfluidic devices. Nano letters 2005, 5 (7), 1351-1356.
42. Jang, J. H.; Dendukuri, D.; Hatton, T. A.; Thomas, E. L.; Doyle, P. S., A Route to Three‐Dimensional Structures in a Microfluidic Device: Stop‐Flow Interference Lithography. Angewandte Chemie International Edition 2007, 46 (47), 9027-9031.
43. Park, J.; Wang, S.; Li, M.; Ahn, C.; Hyun, J.; Kim, D., K. Kim do, JA Rogers, Y. Huang, S. Jeon. Nat. Commun 2012, 3, 916.
44. Jang, J.-H.; Jhaveri, S. J.; Rasin, B.; Koh, C.; Ober, C. K.; Thomas, E. L., Three-dimensionally-patterned submicrometer-scale hydrogel/air networks that offer a new platform for biomedical applications. Nano letters 2008, 8 (5), 1456-1460.
45. Singer, J. P.; Lee, J.-H.; Kooi, S. E.; Thomas, E. L., Rapid fabrication of 3D terahertz split ring resonator arrays by novel single-shot direct write focused proximity field nanopatterning. Optics Express 2012, 20 (10), 11097-11108.
46. Park, J.; Yoon, S.; Kang, K.; Jeon, S., Antireflection behavior of multidimensional nanostructures patterned using a conformable elastomeric phase mask in a single exposure step. Small 2010, 6 (18), 1981-1985.
47. Park, J.; Park, J. H.; Kim, E.; Ahn, C. W.; Jang, H. I.; Rogers, J. A.; Jeon, S., Conformable Solid‐Index Phase Masks Composed of High‐Aspect‐Ratio Micropillar Arrays and Their Application to 3D Nanopatterning. Advanced Materials 2011, 23 (7), 860-864.
48. Hyun, J. K.; Ahn, C.; Kang, H.; Kim, H. J.; Park, J.; Kim, K. H.; Ahn, C. W.; Kim, B. J.; Jeon, S., Soft Elastomeric Nanopillar Stamps for Enhancing Absorption in Organic Thin‐Film Solar Cells. Small 2013, 9 (3), 369-374.
49. Guo, L. J., Nanoimprint lithography: methods and material requirements. Advanced materials 2007, 19 (4), 495-513.
50. Oh, D. K.; Lee, T.; Ko, B.; Badloe, T.; Ok, J. G.; Rho, J., Nanoimprint lithography for high-throughput fabrication of metasurfaces. Frontiers of Optoelectronics 2021, 14 (2), 229-251.
51. Zhu, J.; Wang, Z.; Lin, S.; Jiang, S.; Liu, X.; Guo, S., Low-cost flexible plasmonic nanobump metasurfaces for label-free sensing of serum tumor marker. Biosensors and Bioelectronics 2020, 150, 111905.
52. Jiawook, R.; Heidari, B., Nanoimprint lithography and transdermal drug-delivery devices. In Emerging Applications of Nanoparticles and Architecture Nanostructures, Elsevier: 2018; pp 141-175.
53. Endo, T.; Ozawa, S.; Okuda, N.; Yanagida, Y.; Tanaka, S.; Hatsuzawa, T., Reflectometric detection of influenza virus in human saliva using nanoimprint lithography-based flexible two-dimensional photonic crystal biosensor. Sensors and Actuators B: Chemical 2010, 148 (1), 269-276.
54. Lee, J.; Lee, M., Improved light harvest in diffraction grating-embedded TiO2 nanoparticle film. Applied Physics A 2017, 123 (12), 1-8.
55. Chen, J.-J.; Cheng, C.-C.; Chang, C.-J.; Lu, C.-H.; Chen, J.-K., Rapid label-free detection of Pseudomonas aeruginosa using a fluidic grating chip with a reflective laser system. Biosensors and Bioelectronics: X 2022, 10, 100138.
56. Chang, C.-L.; Acharya, G.; Savran, C. A., In situ assembled diffraction grating for biomolecular detection. Applied physics letters 2007, 90 (23), 233901.
57. Avella-Oliver, M.; Ferrando, V.; Monsoriu, J. A.; Puchades, R.; Maquieira, A., A label-free diffraction-based sensing displacement immunosensor to quantify low molecular weight organic compounds. Analytica Chimica Acta 2018, 1033, 173-179.
58. Acharya, G.; Chang, C.-L.; Savran, C., An optical biosensor for rapid and label-free detection of cells. Journal of the American Chemical Society 2006, 128 (12), 3862-3863.
59. Acharya, G.; Chang, C.-L.; Doorneweerd, D. D.; Vlashi, E.; Henne, W. A.; Hartmann, L. C.; Low, P. S.; Savran, C. A., Immunomagnetic diffractometry for detection of diagnostic serum markers. Journal of the American Chemical Society 2007, 129 (51), 15824-15829.
60. Bigelow, W.; Pickett, D.; Zisman, W., Oleophobic monolayers: I. Films adsorbed from solution in non-polar liquids. Journal of Colloid Science 1946, 1 (6), 513-538.
61. Nuzzo, R. G.; Allara, D. L., Adsorption of bifunctional organic disulfides on gold surfaces. Journal of the American Chemical Society 1983, 105 (13), 4481-4483.
62. Cousty, J.; Marchenko, A., Substrate-induced freezing of alkane monolayers adsorbed on Au (111) dependant on the alkane/gold misfit. Surface science 2002, 520 (3), 128-136.
63. Nguyen, K. C., Quantitative analysis of COOH-terminated alkanethiol SAMs on gold nanoparticle surfaces. Advances in Natural Sciences: Nanoscience and Nanotechnology 2012, 3 (4), 045008.
64. Howarter, J. A.; Youngblood, J. P., Optimization of silica silanization by 3-aminopropyltriethoxysilane. Langmuir 2006, 22 (26), 11142-11147.
65. Knani, D.; Foox, M.; Zilberman, M., Simulation of the bioadhesive gelatin-alginate conjugate loaded with antibiotic drugs. Polymers for Advanced Technologies 2019, 30 (3), 519-528.
66. Goodarzi, H.; Jadidi, K.; Pourmotabed, S.; Sharifi, E.; Aghamollaei, H., Preparation and in vitro characterization of cross-linked collagen-gelatin hydrogel using EDC/NHS for corneal tissue engineering applications. Int J Biol Macromol 2019, 126, 620-632.
67. Wang, C.; Yan, Q.; Liu, H. B.; Zhou, X. H.; Xiao, S. J., Different EDC/NHS activation mechanisms between PAA and PMAA brushes and the following amidation reactions. Langmuir 2011, 27 (19), 12058-68.
68. Shapiro, L.; Cohen, S., Novel alginate sponges for cell culture and transplantation. Biomaterials 1997, 18 (8), 583-590.
69. Smidsrød, O., Molecular basis for some physical properties of alginates in the gel state. Faraday discussions of the Chemical Society 1974, 57, 263-274.
70. Smidsrod, O.; Haug, A.; Lian, B., Properties of Poly (1, 4-Hexuronates) in Gel State. 1. Evaluation of a method for determination of stiffness. Acta Chemica Scandinavica 1972, 26 (1), 71-&.
71. de Vos, P.; Faas, M. M.; Strand, B.; Calafiore, R., Alginate-based microcapsules for immunoisolation of pancreatic islets. Biomaterials 2006, 27 (32), 5603-5617.
72. Ho, Y.-C.; Mi, F.-L.; Sung, H.-W.; Kuo, P.-L., Heparin-functionalized chitosan–alginate scaffolds for controlled release of growth factor. International journal of pharmaceutics 2009, 376 (1-2), 69-75.
73. Sennerby, L.; Röstiund, T.; Albrektsson, B.; Albrektsson, T., Acute tissue reactions to potassium alginate with and without colour/flavour additives. Biomaterials 1987, 8 (1), 49-52.
74. Akerström, B.; Brodin, T.; Reis, K.; Björck, L., Protein G: a powerful tool for binding and detection of monoclonal and polyclonal antibodies. The Journal of Immunology 1985, 135 (4), 2589-2592.
75. Makaraviciute, A.; Ramanaviciene, A., Site-directed antibody immobilization techniques for immunosensors. Biosens Bioelectron 2013, 50, 460-71.
76. Hoechst, B.; Voigtlaender, T.; Ormandy, L.; Gamrekelashvili, J.; Zhao, F.; Wedemeyer, H.; Lehner, F.; Manns, M. P.; Greten, T. F.; Korangy, F., Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology 2009, 50 (3), 799-807.
77. Ostrand-Rosenberg, S.; Sinha, P., Myeloid-derived suppressor cells: linking inflammation and cancer. The Journal of Immunology 2009, 182 (8), 4499-4506.
78. Srivastava, M. K.; Zhu, L.; Harris-White, M.; Huang, M.; St John, M.; Lee, J. M.; Salgia, R.; Cameron, R. B.; Strieter, R.; Dubinett, S., Targeting myeloid-derived suppressor cells augments antitumor activity against lung cancer. ImmunoTargets and therapy 2012, 1, 7.
79. Nagaraj, S.; Schrum, A. G.; Cho, H.-I.; Celis, E.; Gabrilovich, D. I., Mechanism of T cell tolerance induced by myeloid-derived suppressor cells. The Journal of Immunology 2010, 184 (6), 3106-3116.
80. Li, H.; Han, Y.; Guo, Q.; Zhang, M.; Cao, X., Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-β1. The Journal of Immunology 2009, 182 (1), 240-249.
81. Movahedi, K.; Guilliams, M.; Van den Bossche, J.; Van den Bergh, R.; Gysemans, C.; Beschin, A.; De Baetselier, P.; Van Ginderachter, J. A., Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell–suppressive activity. Blood, The Journal of the American Society of Hematology 2008, 111 (8), 4233-4244.
82. Gallina, G.; Dolcetti, L.; Serafini, P.; De Santo, C.; Marigo, I.; Colombo, M. P.; Basso, G.; Brombacher, F.; Borrello, I.; Zanovello, P., Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. The Journal of clinical investigation 2006, 116 (10), 2777-2790.
83. Zea, A. H.; Rodriguez, P. C.; Atkins, M. B.; Hernandez, C.; Signoretti, S.; Zabaleta, J.; McDermott, D.; Quiceno, D.; Youmans, A.; O'Neill, A., Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer research 2005, 65 (8), 3044-3048.
84. Liu, C.-Y.; Wang, Y.-M.; Wang, C.-L.; Feng, P.-H.; Ko, H.-W.; Liu, Y.-H.; Wu, Y.-C.; Chu, Y.; Chung, F.-T.; Kuo, C.-H., Population alterations of L-arginase-and inducible nitric oxide synthase-expressed CD11b+/CD14−/CD15+/CD33+ myeloid-derived suppressor cells and CD8+ T lymphocytes in patients with advanced-stage non-small cell lung cancer. Journal of cancer research and clinical oncology 2010, 136 (1), 35-45.
85. Mandruzzato, S.; Solito, S.; Falisi, E.; Francescato, S.; Chiarion-Sileni, V.; Mocellin, S.; Zanon, A.; Rossi, C. R.; Nitti, D.; Bronte, V., IL4Rα+ myeloid-derived suppressor cell expansion in cancer patients. The Journal of Immunology 2009, 182 (10), 6562-6568.
86. Bronte, V.; Zanovello, P., Regulation of immune responses by L-arginine metabolism. Nature Reviews Immunology 2005, 5 (8), 641-654.
87. Huang, B.; Pan, P.-Y.; Li, Q.; Sato, A. I.; Levy, D. E.; Bromberg, J.; Divino, C. M.; Chen, S.-H., Gr-1+ CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer research 2006, 66 (2), 1123-1131.
88. Kim, W.; Ng, J. K.; Kunitake, M. E.; Conklin, B. R.; Yang, P., Interfacing silicon nanowires with mammalian cells. Journal of the American Chemical Society 2007, 129 (23), 7228-7229.
89. Hällström, W.; Mårtensson, T.; Prinz, C.; Gustavsson, P.; Montelius, L.; Samuelson, L.; Kanje, M., Gallium phosphide nanowires as a substrate for cultured neurons. Nano letters 2007, 7 (10), 2960-2965.
90. Lee, J.-H.; Zhang, A.; You, S. S.; Lieber, C. M., Spontaneous internalization of cell penetrating peptide-modified nanowires into primary neurons. Nano letters 2016, 16 (2), 1509-1513.
91. Xie, C.; Hanson, L.; Xie, W.; Lin, Z.; Cui, B.; Cui, Y., Noninvasive neuron pinning with nanopillar arrays. Nano letters 2010, 10 (10), 4020-4024.
92. Berthing, T.; Bonde, S.; Sørensen, C. B.; Utko, P.; Nygård, J.; Martinez, K. L., Intact mammalian cell function on semiconductor nanowire arrays: New perspectives for cell‐based biosensing. Small 2011, 7 (5), 640-647.
93. Qi, S.; Yi, C.; Ji, S.; Fong, C.-C.; Yang, M., Cell adhesion and spreading behavior on vertically aligned silicon nanowire arrays. ACS applied materials & interfaces 2009, 1 (1), 30-34.
94. Wang, S.; Liu, K.; Liu, J.; Yu, Z. T. F.; Xu, X.; Zhao, L.; Lee, T.; Lee, E. K.; Reiss, J.; Lee, Y. K., Highly efficient capture of circulating tumor cells by using nanostructured silicon substrates with integrated chaotic micromixers. Angewandte Chemie 2011, 123 (13), 3140-3144.
95. Wang, S.; Wang, H.; Jiao, J.; Chen, K. J.; Owens, G. E.; Kamei, K. i.; Sun, J.; Sherman, D. J.; Behrenbruch, C. P.; Wu, H., Three‐dimensional nanostructured substrates toward efficient capture of circulating tumor cells. Angewandte Chemie International Edition 2009, 48 (47), 8970-8973.
96. Shalek, A. K.; Robinson, J. T.; Karp, E. S.; Lee, J. S.; Ahn, D.-R.; Yoon, M.-H.; Sutton, A.; Jorgolli, M.; Gertner, R. S.; Gujral, T. S., Vertical silicon nanowires as a universal platform for delivering biomolecules into living cells. Proceedings of the National Academy of Sciences 2010, 107 (5), 1870-1875.
97. Hanson, L.; Lin, Z. C.; Xie, C.; Cui, Y.; Cui, B., Characterization of the cell–nanopillar interface by transmission electron microscopy. Nano letters 2012, 12 (11), 5815-5820.
98. VanDersarl, J. J.; Xu, A. M.; Melosh, N. A., Nanostraws for direct fluidic intracellular access. Nano letters 2012, 12 (8), 3881-3886.
99. McKnight, T. E.; Melechko, A. V.; Griffin, G. D.; Guillorn, M. A.; Merkulov, V. I.; Serna, F.; Hensley, D. K.; Doktycz, M. J.; Lowndes, D. H.; Simpson, M. L., Intracellular integration of synthetic nanostructures with viable cells for controlled biochemical manipulation. Nanotechnology 2003, 14 (5), 551.
100. Friedmann, A.; Hoess, A.; Cismak, A.; Heilmann, A., Investigation of cell–substrate interactions by focused ion beam preparation and scanning electron microscopy. Acta biomaterialia 2011, 7 (6), 2499-2507.
101. McKnight, T. E.; Melechko, A. V.; Hensley, D. K.; Mann, D. G.; Griffin, G. D.; Simpson, M. L., Tracking gene expression after DNA delivery using spatially indexed nanofiber arrays. Nano Letters 2004, 4 (7), 1213-1219.
102. Mann, D. G.; McKnight, T. E.; McPherson, J. T.; Hoyt, P. R.; Melechko, A. V.; Simpson, M. L.; Sayler, G. S., Inducible RNA interference-mediated gene silencing using nanostructured gene delivery arrays. Acs Nano 2008, 2 (1), 69-76.
103. Harjunpää, H.; Llort Asens, M.; Guenther, C.; Fagerholm, S. C., Cell adhesion molecules and their roles and regulation in the immune and tumor microenvironment. Frontiers in immunology 2019, 10, 1078.
104. Brodusch, N.; Demers, H.; Gauvin, R., Field emission scanning electron microscopy: New perspectives for materials characterization. Springer: 2018.
105. Binnig, G.; Quate, C. F.; Gerber, C., Atomic force microscope. Physical review letters 1986, 56 (9), 930.
106. Fadley, C. S., X-ray photoelectron spectroscopy: Progress and perspectives. Journal of Electron Spectroscopy and Related Phenomena 2010, 178, 2-32.
107. Smith, B. C., Fundamentals of Fourier transform infrared spectroscopy. CRC press: 2011.
108. Hebbar, R.; Isloor, A.; Ismail, A., Contact angle measurements. In Membrane characterization, Elsevier: 2017; pp 219-255.
109. Weckhuysen, B. M., Ultraviolet-visible spectroscopy. 2004.
110. Paddock, S. W., Principles and practices of laser scanning confocal microscopy. Molecular biotechnology 2000, 16 (2), 127-149.
111. Nolan, J. P.; Condello, D., Spectral flow cytometry. Current protocols in cytometry 2013, 63 (1), 1.27. 1-1.27. 13.
112. Nikon “Fabricating high-precision, multifunctional semiconductors.

無法下載圖示 全文公開日期 2024/09/05 (校內網路)
全文公開日期 2024/09/05 (校外網路)
全文公開日期 2024/09/05 (國家圖書館:臺灣博碩士論文系統)
QR CODE