簡易檢索 / 詳目顯示

研究生: 陳健忠
Chein-chung Chen
論文名稱: 專利技術突破系統化分析及其應用研究
A Study of Systematic Approach in Technology Innovation and Its Applications
指導教授: 林榮慶
Zone-Ching Lin
口試委員: 翁政義
Cheng I Weng
陳文華
W. H. Chen
王國雄
Kuo-shong Wang
陳朝光
Cha'o-Kuang Chen
蔡穎堅
Ying-chien Tsai
向四海
S. H. Hsiang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 173
中文關鍵詞: TRIZ矛盾矩陣質場理論補償式化學機械研磨非接觸式量測儀
外文關鍵詞: TRIZ contradiction matrix, Substance-Field theory, chemical mechanical planarization, non-contact
相關次數: 點閱:569下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文旨在建立提昇創新研發效能的流程以及提昇流程效率的輔助方法。一般使用TRIZ矛盾矩陣做為創新發明改善的方式,每次僅選取一項改善參數,對複雜的工程問題並無法達成改善目標,所以本文提出「修正式TRIZ分群法多重工程分析步驟(MESMT)」為創新研發流程。針對複雜的工程問題,本文提出先定義主問題,再逐步解決主問題及因主問題所衍生的各子問題,最後組合所有的解決方案,形成完整解答的工程創研流程。為了協助創研流程的推動,本文提出以「多階參數專利判讀模式」對專利內容做出系統化分析,將改善標的逐步歸納在比較可行的研發改善方向上;並以「TRIZ矛盾矩陣分群法(TCMC) 」及「結合TCMC與質場理論的判讀模式(TCMC-SF)」兩種方法來協助TRIZ 矛盾矩陣的選擇及判讀。
本文應用MESMT分析步驟,分別以化學機械研磨(CMP) 及補償式化學機械研磨(CCMP)為改善載具,推論出研磨墊在有花紋及無花紋情形下對晶圓研磨所需的研磨次數公式及步驟方法,發展出研磨次數分佈的數值分析方法,以此數值分析方法模擬出CMP 及 CCMP 研磨墊研磨晶圓時,研磨次數分佈狀態。另外為了驗證結合TCMC與質場理論的判讀模式,本文以非接觸式量測儀為改善載具,對具有深色外觀物件無法擷取出量測點及真人頭部外形測量困難的問題,本文應用MESMT分析步驟及「結合TCMC與質場理論的判讀模式(TCMC-SF)」推論出可行的測量方法。


This study establishes a procedure that incorporates three improved methods for enhancing innovative R&D efficiency in engineering. While capable of improving one feature selected to generate an innovative concept, the TRIZ contradiction matrix is inapplicable for multiple engineering problems that require innovative solutions. To resolve this problem, this study presents a multiple engineering steps of the modified TRIZ (MESMT) scheme. The proposed method initially defines the main problem and, then, sequentially solves various sub-problems in order to solve the larger ones. The feasible innovation concept is then identified based on engineering knowledge. Next, all innovative concepts are integrated to form a comprehensive solution in order to increase procedural efficiency. A TRIZ contradiction matrix clustering method (TCMC) and a combined TCMC and Substance-Field theory (TCMC-SF) are also developed to facilitate the selection and assessment of the TRIZ contradiction matrix.
Based on the proposed MESMT method, the required formulas and procedures can be drawn up for wafer polishing by chemical mechanical planarization (CMP) and compensated chemical mechanical planarization (CCMP) under a polishing pad with and without grooves. Moreover, this study develops a numerical analysis method for the distribution of polishing times. The distribution of polishing times when polishing a wafer by CMP and a CCMP polishing pad is also simulated. A diagram of distribution images of polishing times and a three-dimensional grid distribution diagram of polishing times on a wafer surface demonstrate the feasibility of applying the numerical analysis model to these two polishing styles. Furthermore, non-contact measurement instruments are taken as the carriers of a case to verify the comparative relation between TCMC and the Substance-Field theory. While focusing on deep colored objects unable to retrieve the measurement point of the head profile of an individual, the proposed MESMT and TCMC-SF methods can draw up a
measuring procedure.

中文摘要 I Abstract II 誌 謝 III 目 錄 IV 符號索引 VIII 圖目錄 X 表目錄 XIII 第一章 前言 1 1.1研究動機 1 1.2文獻回顧 1 1.3研究目的 4 1.4本文架構 6 第二章 創新研發模式之系統架構 8 2.1 TRIZ簡介 9 2.2修正式TRIZ分群法多重工程分析步驟流程(MESMT) 9 2.3特定領域系統化知識創新系統架構 12 2.4 專利技術系統化分析程序之規劃 15 2.3.1 統計矩陣表及函數權重值的建立方法 16 2.3.2 建立多階參數矩陣 20 2.3.3 選擇多階參數矩陣表的方法 23 2.3.4 多階參數矩陣判讀步驟流程 26 2.5 TRIZ矛盾矩陣分群法(TCMC) 31 2.5.1 建構TRIZ矛盾參數優先考慮順序表 31 2.5.2. TRIZ 矛盾矩陣分群法(TCMC)的判斷流程 32 2.6 結合TCMC與質場理論的判讀模式(TCMC-SF) 33 2.6.1 質場理論及76條標準解 33 2.6.2 TRIZ 40發明法則與質場理論之76條標準解的相似對應 34 2.6.3 建立結合TCMC與質場理論的判讀模式 35 第三章 研磨裝置之應用 54 3.1 案例1:應用多階參數矩陣判讀模式於CMP 研磨墊的專利分析判讀 54 3.2 案例2:應用MESMT於CCMP無花紋研磨墊有效研磨次數計算方法之推論流程 66 3.2.1 CCMP 無花紋研磨墊研磨晶圓有效研磨次數之創研模式 69 3.2.2 建立 CCMP無花紋研磨墊研磨晶圓之有效研磨次數分析步驟方法 75 3.2.3 分析結果與討論 78 3.3 案例3:應用MESMT於CCMP具花紋研磨墊有效研磨次數計算方法之推論流程 85 3.3.1 CCMP具花紋研磨墊研磨晶圓之有效研磨次數創研模式 85 3.3.2 建立 CCMP具花紋研磨墊研磨晶圓之有效研磨次數分析步驟方法 95 3.3.3 分析結果與討論 105 3.4 案例4:應用MESMT於CMP無花紋及具花紋研磨墊有效研磨次數計算方法之推論流程 122 3.4.1 CMP無花紋研磨墊研磨晶圓有效研磨次數推論模式 122 3.4.2 建立CMP無花紋研磨墊研磨晶圓之有效研磨次數分析步驟 125 3.4.3 CMP具花紋研磨墊研磨晶圓之有效研磨次數之推論模式 127 3.4.4 建立CMP具花紋研磨墊研磨晶圓之有效研磨次數分析步驟 127 3.4.5 CMP及CCMP 具不同研磨墊花紋之晶圓研磨次數分佈之分析結果與討論 132 第四章 非接觸量測儀量測方法之規劃 139 4.1 案例1:應用TCMC-SF於具有深色外觀物件無法擷取出量測點的問題 139 4.2 案例2:應用TCMC-SF於真人頭部外形測量困難的問題 150 第五章 結論及建議 160 5.1 結論 160 5.2 建議 164 參考文獻 165 作者簡介 172 國立臺灣科技大學博碩士論文授權書 173

1.Altshuller, G., And Suddenly the Inventor Appeared: TRIZ the Theory of Inventive Problem Solving, translated by Lev Shulyak. Worchester, Massachusetts, Technical Innovation Center (1996).
2.Goldfire Innovator,
http://www.invention-machine.com/index.htm
3.The trial version of CREAX INNOVATION SUITE 3.1,
http://www.creax.com/trialVersion/evaluation.html/
4.Liu, C. C., and Chen, J. L., “Development of Product Green Innovation Design Method,” Proceedings of EcoDesign 2001: Second International Symposium on Environmentally Conscious Design and Inverse Manufacturing, Tokyo, Japan, pp.168-173 (2001).
5.Liu, C. C., and Chen, J. L., “A TRIZ Inventive Product Design Method without Contradiction Information”, The TRIZ Journal, Paper No. 6, http://www.triz-journal.com, (2001).
6.Chang, H. T. and Chen, J. L., “An Approach Combining Extension Method with TRIZ for Innovative Product Design” , Journal of the Chinese Society of Mechanical Engineers, Vol.25, No.1, pp.13-22 (2004).
7.Low, M. T., Lamvik, K. W., and Myklebust, O., “Manufacturing a green service: engaging the TRIZ model of innovation”, IEEE transactions on electronics packaging manufacturing,Vol. 24, Issue: 1, pp.10–17 (2001).
8.Chang, H.T. and Chen, J. L., “The Conflict-Problem-Solving CAD Software Integrating TRIZ into Eco-Innovation”, Advances in Engineering Software, Vol.35, Issue: 8-9, pp.553-566 (2004).
9.Wang, H., Chen, G., Lin, Z., and Wang, H., “Algorithm of integrating QFD and TRIZ for the innovative design process”, International Journal of Computer Applications in Technology, Vol.23, Issue:n1, pp.41-52 (2005).
10.Tong, L. H., He C., and Shen, L., “Automatic classification of patent documents for TRIZ users”, World Patent Information, Vol.28, pp.6-13 (2006).
11.Terninko, J., ”The QFD, TRIZ and Taguchi Connection : Customer– Driven Robust Innovation”, The Ninth Symposium on Quality Function Deployment, pp374-380 (1997).
12.León-Rovira, N., and Aguayo, H., “A new Model of the Conceptual Design Process using QFD/FA/TRIZ”, The TRIZ Journal. http://www.triz-journal.com/, July (1998).
13.Apte, P. R. and Mann, D. L., “Taguchi and TRIZ: Comparisons and Opportunities”, The TRIZ Journal, http://www.triz-journal.com/, November (2001).
14.Mann, D.L., “Assessing the Accuracy of the Contradiction Matrix For Recent Mechanical Inventions”, The TRIZ Journal, http://www.triz-journal.com/, February (2002).
15.Fey, V., and Rivin, E., Innovation on Demand: New Product Development Using TRIZ, Cambridge University Press, UK, ( 2005).
16.Savransky, S. D., Engineering of Creativity –Introduction to TRIZ Methodology of Inventive Problem Solving, CRC Press, New York, (2000).
17.Maron, M. E., “Automatic Indexing: An Experimental Inquiry”, Journal of the ACM, Vol.8, pp.404-417 (1961).
18.Borko, H. and Bernick, M., “Automatic Document Classification”, Journal of the ACM, Vol.10, No.1, pp.151-162 (1963).
19.Kwok, K. L., “The Use of Title and Cited Titles as Document Representation for Automatic Classification”, Information and Management, Vol.11, pp.201-206 (1975).
20.Kononenko, I., “Inductive and Bayesian Learning in Medical Diagnosis”, Applied Artificial Intelligence, Vol.7, No.4, pp.317-337 (1993).
21.Yang, C. C., “Fuzzy Bayesian Inference”, Proceedings of the IEEE International Conference on Computational Cybernetics and Simulation, Vol.3, pp.2707-2712 (1997).
22.Preston, F. W., the Society of Glass Technology, XI 214 (1927).
23.Tseng, W. T., Chin, J. H. and Kang, L. C., “A Comparative Study on the Roles of Velocity in the Material Removal Rate during Chemical Mechanical Polishing”, Journal of the Electrochemical Society,Vol. 146, pp.1952-1959 (1999).
24.Danilo, C. M. and Beaudoin, S., “A Locally Relevant Prestonian Model for Wafer Polishing”, Journal of the Electrochemical Society, Vol.150, No. 2, pp.96-102 (2003).
25.Shaw, D., and Chang, J. “A Method to Improve the Efficiency of CMP Process“, IEEE Transactions on Copmpnents and Packaging Technologies, Vol.24, No.4, pp.661-666 (2001).
26.Jongwon, S., Cyriaque, P. S., Andrew, T. K., John A. T., and Timothy, S. C., “Multiscale Material removal modeling of chemical mechainical polishing”, Wear, Vol.254, pp. 307-320 (2003).
27.Lai, J. and Pan, W. C. “Compensating Chemical Mechanical Wafer Polishing Apparatus and method”, U.S. Pat., 6685543 (2004).
28.Lander, S.E., “Issues in Multiagent Design Systems”, IEEE Expert:Intelligent System & Their Application, Vol.12, No.2, pp.18-26 (1997).
29.Pham, V. A., and Karmouch, A., "Mobile Software Agents:An Overview", IEEE Communications Magazine, pp.26-37 (1998).
30.Maes, P.,” Agent that Reduce Work and Information Overload”, Communications of the ACM, Vol.37, No.7, pp.31-40 (1994).
31.Altshuller, G., 40 principles, Technical Innovation Center, Inc. Worcester, MA, (1997).
32.Murugesan, S., “Intelligent Agents on the Interner and Web”, IEEE Region 10 International Conference on Global Connectivity in Energy, Computer, Communication and Control, Vol.1, pp.97-102 (1998).
33.Acton, W. H., Johnson, P. J., and Goldsmith, T. E., “Structural knowledge assessment: Comparison of referent structures”, Journal of Educational Psychology, Vol.86, pp.303-311 (1994).
34.Boldt, M. N., “Assessing students’ accounting knowledge: A structural approach”, Journal of Education for Business, Vol.76, No.5, pp.262-269 (2001).
35.Rodgers, J. L. and Nicewander, W. A., “Thirteen ways to look at the correlation coefficient”, The American Statistician, Vol.42, No.1, pp. 59-66 (1988).
36.Chen, C.Y., Yu, C. C., Shen, S. H., and Ho, M., “Operational Aspects of Chemical Mechanical Polishing Polish Pad Profile Optimization”, Journal of the Electrochemical Society, Vol.147, No.10, pp.3922-3930 (2000).
37.Tseng, W. T., and Wang, Y. L., “Re-examination of Pressure and SpeedDependance of Removal Rate during Chemical-Mechanical Polishing Process”, Journal of the Electrochemical Society, Vol.144, pp.L15-L17 (1997).
38.Stavreva, Z., Zeidler, D., PlÖtner, M., and Drescher, K.,” Characteristics in Chemical-Mechanical Polishing of Copper: Comparison of Polishing Pads”, Applied Surface Science Vol.108, pp.39-44 (1997).
39.Tat-Kwan, Y., Chris, C. Y., and Marius, O.,”A Statistical Polishing and Model for Chemical-Mechanical Polishing“, IDEM, pp.865-868 (1993).
40.Altshuller, Genrich, Creativity as an Exact Science, Translated by Anthony Williams, Gordon & Breach Science Publisher, NY, London, Paris, (1984).
41.Chang, H. T.,“ The study of integrating Su-Field analysis modeling with eco-innovative concept for product design“,Eco Design2005:Fourth International Symposium on Environmentally Consicious Design and Inverse Manufactruing, Tokyo, Japan,pp.663-670 (2005).
42.Lin, K.H., Ming, C., and Chen, T. J., ”Novel coordinate mapping algorithm for three-dimensional profile noncontact measurement” , Optical Engineering, Vol.41, pp.1615-1620 (2002).
43.Ye S.Y., “Device Innovation Design using Agent Action Model and Knowledge Base Improvement using Relational Model”, Master thesis, National Taiwan Universityof Science and Technology, Taipei, Taiwan, (2008).
44.Chen M.Y., “The Study of Developing Patent Classification and TRIZ Method Improving Using Bayes Theorem and Fuzzy Logic”, Master thesis, National Taiwan Universityof Science and Technology, Taipei. Taiwan, (2008).
45.Luh, Y., Pan,C. and Wei,C., “An Innovative Design Methodology for the Metadata in Master Data Management System”, International Journal of Innovative Computing, Information and Control ,Vol.4, No.3, pp.626-637 (2008).
46.Raju, G. T., Satyanarayana, P. S., and Patnaik, L. M., “Knowledge discovery from WEB usage data: extraction and Clustering patterns-A survey”, International Journal of Innovative Computing, Information and Control, Vol.4, No.2, pp.381-389 (2008).
47.Tang, Z., Chen, R., and Ji, X., “An innovation process model for identifying manufacturing paradigms”, International Journal of Production Research, Vol.43, No.13, pp. 2725-2742 (2005).
48.Naveh, E., “The effect of integrated product development on efficiency and innovation”, International Journal of Production Research, Vol.43, No.13, pp.2789 – 2808 (2005).
49.Lee, A. H., Chen, H. H., and Tong, Y.,” Developing new products in a network with efficiency and innovation”, International Journal of Production Research, Vol.46, No.17, pp.4687-4707 (2008).
50.Yamashina, H., Ito, T., and Kawada, H., “Innovative product development process by integrating QFD and TRIZ”, International Journal of Production Research, Vol.40, No.5, pp.1031-1050 (2002).
51.Akay, D., Demray, A. and Kurt, M., “Collaborative tool for solving human factors problems in the manufacturing environment: the Theory of Inventive Problem Solving Technique (TRIZ) method”, International Journal of Production Research, Vol.46, No.11, pp.2913-2925 (2008).
52.Huey, S., Steven, T., Wang, M. Y., and Jin, R. R., “Technological Breakthrough in Pad life Improvement and its impact on CMP Coc”, IEEE/SEMI Advanced Semiconductor Manufacturing Conference, pp.54-58 (1999).
53.Chen, C. Y., Yu, C. C., Shen, S. H., and Ho, M.,”Operational Aspects of Chemical Mechanical Polishing Polish Pad Profile Optimization”, Journal of the Electrochemical Society, Vol.147 No.10, pp.3922-3930 (2000).
54.Lin, Z.C., and Chen, C. C., “Method for Analyzing Effective Polishing Frequency and Times for Chemical Mechanical Planarization Polishing Wafer with Different Polishing Pad Profiles”, Journal of the Chinese Society of Mechanical Engineers, Vol.26, No.6, pp.671-676 (2005).
55.Srinivase-Murthy, C., Wang, D., Beaudoin, S. P., Bibby, T., Holland, K., and Cale, T. S., “Stress distribution in chemical mechanical polishing“, Thin Solid films, Vol.308, pp.533-537 (1997).
56.Sugimoto, F., Arimoto, Y., and Takashi, I., “Simultaneous Temperature Measurement of Wafers in Chemical Mechanical Polishing of Silicon Dioxide Layer“, Japanese journal of applied physics, Vol.34, pp.6314-6320 (1995).
57.Choi, J. Y., and Jeong, H. D., “A study on polishing of molds using hydrophilic and abrasive pad“, International Journal of Machine Tools& Manufacture, Vol.44, pp.1163-1169 (2004).
58.Lu, H., Obeng, Y., and Richardson, K. A., “Applicability of dynamic mechanical analysis for CMP Polyurethane pad studies”, Materials Characterization, Vol.49, pp.177-186 (2003).
59.John, M., Chris, D., and Jim, M., “The effect of thin film stress levels on CMP polish rates for PETEOS wafers”, Journal of Materials Processing Technology, Vol.132, pp.16-20 (2003).
60.Hoyoum, K., Hyoungiae, K., Jeong, H., Seo, H., Lee, S., ”Self-conditioning of encapsulated abrasive pad in chemical mechanical polishing “, Journal of Materials Processing Technology, Vol.142, pp.614-618 (2003).
61.Li, W., Shin, D. W., Tomozawa, M. S., and Murarka, P.,” The effect of the Polishing pad treatments on the chemical-mechanical polishing of SiO2 films“, Thin Solid Films, Vol.270, pp.601-606 (1995).
62.Cho, C. H., Park, S. S., and Ahn,Y., “Three-dimensional wafer scale hydrodynamic modeling for chemical mechanical polishing”, Thin Solid Films,Vol.389, pp.254-260 (2001).
63.Kaplan, S., An Introduction to TRIZ; The Russian Theory of Inventive Problem Solving, Draft Ideation International, Inc. Santa Monica, CA, (1996).
64.Bacon, G., Beckman, S., Mowery, D., and Wilson E., “Managing product definition in high-technology industries: A pilot study”, Managing Product Definition in High-technology Industries, Vol.36, No.3, pp.32-56 (1994).
65.Bessmer, S., and Treffinger, D., “Analyzing creative products: Review andsynthesis”, Journal of Creative Behavior, Vol.15, pp.158-178 (1981).
66.Bessmer, S., and O’Quin K., “Analyzing creative products; Refinement and test of a judging instrument”, Journal of Creative Behavior, Vol.20, pp.115-126 (1986).
67.Altshuller, G., The Innovation Algorithm, Technical Innovation Center, Inc. Worcester, MA, (2000).

QR CODE