簡易檢索 / 詳目顯示

研究生: 王晧宇
Hao-Yu Wang
論文名稱: 基於多層興趣區之影像超解析演算法
An Image Super-Resolution Algorithm Based on Multi-Layer Region of Interest
指導教授: 楊英魁
Ying-Kuei Yang
口試委員: 黎碧煌
Bih-Hwang Lee
李建南
Chien-Nan Lee
張博綸
Po-Lun Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 80
中文關鍵詞: 高斯高通濾波維納濾波影像超解析興趣區
外文關鍵詞: Gaussian high-pass filter, image super-resolution, Wiener filter, region of interest
相關次數: 點閱:250下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技的快速發展,人們對影像及影片解析度的要求逐漸提高,但是許多情況下使用者僅能取得低解析的影像,為了讓這些低解析的影像能夠被使用,此時便需要影像超解析的輔助,影像超解析透過將低解析影像進行處理,輸出高解析影像給使用者。
    常見的影像超解析可以分為四大類,分別為內插式、學習式及範例式、重建式、邊緣式及梯度式,本文的方法是透過運用重建式及梯度式影像超解析的技術,結合影像興趣區及影像超解析,實現一種新的影像超解析方法。此演算法共分為三個步驟,分別處理以下三層的興趣區,首先是第一層興趣區,將經過基礎縮放的低解析影像進行全區域高斯高通濾波處理。接著在第二層興趣區,透過設定閥值以篩選梯度影像區域,找到影像中主要物體區域,對物體所在的區域進行二次高斯高通濾波處理。最後一層興趣區,將影像平滑區域篩選出來,使用維納濾波器進行雜訊處理,最終輸出即為處理過後的高解析影像。
    在實驗結果章節,為了驗證本文所提出的演算法的可行性,總共使用263張影像進行數據分析,同時對兩倍放大及四倍放大進行實驗,而實驗結果證明本文所提出的演算法能夠在超解析處理的時間耗費及輸出影像的峰值信噪比兩者間取得平衡。根據本文第五章之實驗結果,本文演算法處理速度快速且輸出結果良好,本文演算法的處理速度大幅優於學習式及範例式影像超解析,且峰值信噪比及結構相似性與兩者相當接近。此外本演算法無須任何訓練、學習,僅需一張輸入影像即可完成處理,本文所提出的演算法的處理過程中,無須大量的影像資料庫進行訓練、學習,僅透過輸入一張低解析影像即可以進行影像超解析處理。


    This thesis proposes an image super-resolution (SR) algorithm, based on multi-layer region of interest (ROI).
    Image super-resolution provides a solution to the problem of limited resolution in image or video. However, the algorithms which have high quality of output images need to spend much time in training. The algorithms which have lower time complexity have low quality of output images.
    The core idea of the proposed approach in this thesis are: (1) Proposing an image super-resolution algorithm which is getting a balance between time complexity and output image quality; and (2) Combining the concept of region of interest with image super-resolution to improve the output image quality. The algorithm enhances different image details in different layer of region of interest.
    The simulation results in this paper has shown the algorithm gets a well balance between the quality of output image and time complexity.

    第一章 緒論 1.1研究背景 1.2研究動機 1.3 論文架構 第二章 文獻探討 2.1 內插式影像超解析 2.2 學習式及範例式影像超解析 2.2.1 基於稀疏演算法之影像超解析 2.2.2 基於範例式學習法之影像超解析 2.3 重建式影像超解析 2.4 邊緣式及梯度式影像超解析 第三章 多層興趣區影像超解析 3.1 影像處理架構 3.2 基礎縮放及第一層興趣區 3.2.1 Lanczos重新取樣法 3.2.2 第一層興趣區 3.2.3高斯高通濾波 3.3 第二層興趣區 3.3.1影像梯度 3.3.2 影像膨脹與侵蝕 3.4第三層興趣區 第四章 實驗結果與討論 4.1實驗方法與環境 4.2 實驗結果 4.2.1 兩倍放大實驗 4.2.2 四倍放大實驗 第五章 結論 參考文獻 附錄 影像畫質資料庫

    [1] Kaibing Zhang, Xinbo Gao, Dacheng Tao, and Xuelong Li, ” Single Image Super-Resolution With Non-Local Means and Steering Kernel Regression,” IEEE Transactions on Image Processing, vol. 21, no. 11, pp. 4544-4556, 2012.
    [2] M. Protter, M. Elad, H. Takeda, and P. Milanfar, “Generalizing the nonlocal-means to super-resolution reconstruction,” IEEE Transactions on Image Processing., vol. 18, no. 1, pp. 36-51, Jan. 2009.
    [3] H. Takeda, S. Farsiu, and P. Milanfar, “Kernel regression for image processing and reconstruction,” IEEE Transactions on Image Processing., vol. 16, no. 2, pp. 349-366, Feb. 2007.
    [4] Qing Yan, Yi Xu, Xiaokang Yang, and Truong Q, “Single Image Super Resolution Based on Gradient Profile Sharpness,” IEEE Transactions on Image Processing, vol. 24, no. 10, pp. 3187-3202, 2015.
    [5] Fei Zhou, Wenming Yang, and Qingmin Liao, “Interpolation-Based Image Super-Resolution Using Multisurface Fitting,” IEEE Transactions on Image Processing, vol. 21, no. 7, pp. 3312-3318, 2012.
    [6] R. Keys, “Cubic convolution interpolation for digital image processing,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 29, no. 6, pp. 1153-1160, 1981.
    [7] Altman, N. S., “An introduction to kernel and nearest-neighbor nonparametric regression,” The American Statistician, vol.46, no. 3, pp. 175-185, 1992.
    [8] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang, “Image Super-Resolution Using Deep Convolutional Networks,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 38, pp. 295 – 307, 2015.
    [9] Yang, J., Wright, J., Huang, T.S., Ma, Y., “Image super-resolution via sparse representation,” IEEE Transactions on Image Processing, vol. 19, no. 11, pp. 2861–2873, 2010.
    [10] K. I. Kim and Y. Kwon, “Example-based learning for single-image super-resolution,” in Proc. DAGM, pp. 456—465, Germany, 2008.
    [11] W. T. Freeman, T. R. Jones, and E. C. Pasztor, “Example-based Super-Resolution,” IEEE Comput. Graph. Appl., vol. 22, no. 2, pp. 56–65, 2002.
    [12] W. T. Freeman, E. C. Pasztor, and O. Carmichael, “Learning low-level vision,” International Journal of Computer Vision, vol. 40, no. 1, pp. 25–47, Jun. 2000.
    [13] Timofte, R., De Smet, V., Van Gool, L., “Anchored Neighborhood Regression For Fast Example-Based Super-Resolution,” IEEE International Conference on Computer Vision. pp. 1920–1927, Australia, 2013.
    [14] Z. Lin and H.-Y. Shum, “Fundamental limits of Reconstruction-based Super-Resolution algorithms under local translation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 1, pp. 83–97, Jan. 2004.
    [15] S. Baker and T. Kanade, “Limits on super-resolution and how to break them,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 9, pp. 1167–1183, Sep. 2002.
    [16] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P, “Gradient-based learning applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,, pp. 2278–2324, 1998.
    [17] Lingfeng Wang, Shiming Xiang, Gaofeng Meng, Huaiyu Wu, and Chunhong Pan, “Edge-Directed Single-Image Super-Resolution via Adaptive Gradient Magnitude Self-Interpolation,” IEEE Transactions on Circuits and Systems For Video Technology, vol. 23, no. 8, pp. 1289-1299, 2013.
    [18] Andrew S. Glassner., ”Graphics gems” Academic Press, 1990.
    [19] P. Kapsalas, K. Rapantzikos, A. Sofou, Y. Avrithis, “Regions of interest for accurate object detection,” International Workshop on Content-Based Multimedia Indexing, pp. 147 – 154, London, 2008.
    [20] Rafael C. Gonzalez and Richard E. Woods, “Digital Image Processing(2nd Edition),” Prentice-Hall, Inc. 2002.
    [21] Jae S. Lim, “Two-Dimensional Signal and Image Processing,” Prentice-Hall, Inc. 1989.
    [22] Ninassi A, Callet PL, Autrusseau F, “Subjective Quality Assessment: IVC Database,” Available: http://www2.irccyn.ec-nantes.fr/ivcdb/IVC_SubQualityDB.zip, 2006.
    [23] Larson EC, Chandler DM, “Categorical Image Quality (CSIQ) Database,” Available: http://vision.okstate.edu/csiq, 2010.
    [24] D. Martin, C. Fowlkes, D. Tal, and J. Malik., “A Database of Human Segmented Natural Images and its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics,” ICCV 2001, Available: https://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/.
    [25] Libin Sun, James Hays, “Super-resolution from Internet-scale Scene Matching,” ICCP, Germany 2012, Available: http://cs.brown.edu/~lbsun/SRproj2012/SR_iccp2012.html.
    [26] H.R. Sheikh, Z.Wang, L. Cormack and A.C. Bovik, “LIVE Image Quality Assessment Database,” Available: http://live.ece.utexas.edu/research/quality/subjective.htm.
    [27] Y. Horita et al., “MICT Image Quality Evaluation Database,” 2008.
    [28] Welstead, Stephen T., “Fractal and wavelet image compression techniques,” SPIE Publication. pp. 155–156, 1999.
    [29] Q. Huynh-Thu and M. Ghanbari, “Scope of validity of PSNR in image/video quality assessment,” Electronics Letters, vol. 44, pp. 800-801, 2008.
    [30] Zhou Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Transactions on Image Processing, vol. 13, pp. 600-612, 2004.
    [31] Z. Wang, E. P. Simoncelli and A. C. Bovik, “Multiscale structural similarity for image quality assessment,” Signals, Systems and Computers, 2004. Conference Record of the Thirty-Seventh Asilomar Conference on, vol. 2, pp. 1398-1402, USA, 2003.

    無法下載圖示 全文公開日期 2021/06/16 (校內網路)
    全文公開日期 2026/06/16 (校外網路)
    全文公開日期 2026/06/16 (國家圖書館:臺灣博碩士論文系統)
    QR CODE