簡易檢索 / 詳目顯示

研究生: 林淳翔
Chun-Hsiang Lin
論文名稱: 碳球在電催化碘離子氧化反應上的應用
Application of Carbon Spheres in Electrocatalytic Iodide Oxidation Reaction
指導教授: 蘇威年
Wei-Nien Su
黃炳照
Bing-Joe Hwang
蔡孟哲
Meng-Che Tsai
口試委員: 蘇威年
Wei-Nien Su
黃炳照
Bing-Joe Hwang
蔡孟哲
Meng-Che Tsai
趙基揚
Chi-Yang Chao
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 134
中文關鍵詞: 碘離子氧化反應碳基無金屬觸媒碳陽離子硫摻雜
外文關鍵詞: Iodide oxidation reaction (IOR), Carbon-based metal-free catalysts (CMFCs), Carbocations, Sulfur doping
相關次數: 點閱:218下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本實驗採用碘離子氧化反應 (Iodide oxidation reaction, IOR) 取代傳統水電解陽極的產氧反應 (Oxygen evolution reaction, OER)。利用IOR 氧化電位比 OER 相對較低的優勢,整體氫氣的生產具有產氫能耗降低的優勢,還生產更具經濟價值的碘。
本實驗中使用的觸媒是源自葡萄糖的非金屬碳球 (Carbon spheres, CS)。 此外,經由摻雜或改變碳化溫度開發了一系列碳基無金屬觸媒 (Carbon-based metal-free catalysts, CMFCs)。我們發展出了一種用於 IOR 的碳基電觸媒,具有出色的酸性條件耐受性、結構穩定性和可持續性,最重要的是在沒有金屬觸媒的應用下,具有相當優異的催化活性,為一種綠色、高實用性的觸媒。
通過掃描電子顯微鏡 (SEM)、拉曼光譜 (Raman)、軟X射線吸收光譜 (XAS)、X射線光電子能譜 (XPS) 等對材料進行了鑑定。在拉曼光譜結果中,可以發現元素摻雜 (包含氮、氧、磷、硫) 可以有效改變 ID/IG。從 FTIR、XPS 和 XAS 的結果可以發現,當C=O的鍵結較多且該鍵結上碳原子的電子密度較低時,可以有效提高 IOR 的活性。這意味著在材料中製造更多的碳陽離子 (Cδ+) 可以更有效地吸引電解液中的碘離子,促進 IOR 反應。
從元素分析也可以看出,只要摻雜少量的硫,就可以有效地提高活性。在電化學性能方面,1 wt% 硫摻雜的觸媒 (2SCS/TF) 活性性能最好,起始電位為0.61 V,電流密度10 mA/cm2時的電位低至0.64 V,明顯優於 OER。在72小時的穩定性測試中,硫摻雜碳球可以在10 mA/cm2的恆電流下穩定且持續地操作,電壓提高僅為8.9%。


In this thesis, the iodide oxidation reaction (IOR) was used to replace the oxygen evolution reaction (OER) at the anode of the traditional water electrolysis. Through the relatively low oxidation potential of IOR than OER, the overall hydrogen production has the advantage of lower energy consumption and the process produces more economically valuable iodine in addition to hydrogen.
The catalysts used in this experiment are non-metallic carbon spheres (CS) are derived from glucose. Further, a series of carbon-based metal-free catalysts (CMFCs) are developed by doping or changing the carbonization temperature. We demonstrate a carbon-based electrocatalysts for IOR with excellent tolerance to acidic conditions, structural stability, and sustainability. The most important thing is that it has excellent electrocatalytic activity and can be a green and viable catalyst.
The materials were examined by scanning electron microscope (SEM), Raman spectroscopy, soft X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), etc. In the Raman spectroscopic results, it can be found that the elemental doping (including N, O, P, S) was found to change the ID/IG effectively. From the results of FTIR, XPS, and XAS, it is found that the IOR activity can be further improved when there are more C=O bonds, where the electron density of the carbon atoms is low. This indicate that more carbocations (Cδ+) in CMFCs can attract more iodide ions in the electrolyte and promote the IOR reaction.
It is interesting to note that a small amount of sulfur doping can effectively increase the activity. In terms of electrochemical performance, the carbon catalyst with 1 wt% sulfur doping (2SCS/TF) on titanium foam has the best activity performance, exhibiting an onset potential of 0.61 V and a potential as low as 0.64 V at 10 mA/cm2, which is significantly more energy-efficient than a typical OER. In a 72-hour chronopotential stability test, the sulfur-doped carbon spheres can operate continuously at a constant current of 10 mA/cm2, and the voltage varies only 8.9%.

摘要 i ABSTRACT iii 致謝 iv 目錄 vi 圖目錄 xii 表目錄 xviii 第1章 緒論 1 1.1 前言 1 1.2 加值化氫氣生產發展 2 1.2.1 以氨水氧化反應 (AOR) 取代產氧反應 (OER) 2 1.2.2 以甲醇氧化反應 (MOR) 取代產氧反應 (OER) 4 1.2.3 以尿素氧化反應 (UOR) 取代產氧反應 (OER) 5 1.2.4 以各式醇類氧化反應取代產氧反應 (OER) 7 1.2.5 以碘離子氧化反應 (IOR) 取代產氧反應 (OER) 8 1.3 偏光板製程及其廢液 10 1.3.1 偏光板製程 10 1.3.2 碘廢液和電化學碘離子氧化反應之關聯性 10 1.4 碘離子氧化反應 (Iodide oxidation reaction, IOR) 12 1.4.1 碘物質電位- pH圖 (Pourbaix diagram) 12 1.4.2 碘離子氧化反應 (IOR) 發展 13 1.4.2.1 IOR反應探討 13 1.4.2.2 玻璃碳電極應用於 IOR 15 1.4.2.3 釕錫雙合金氧化物觸媒 (RuSn SAO) 應用於 IOR 16 1.4.2.4 釕鈦合金氧化物觸媒電極 (RuTiO) 應用於 IOR 18 1.4.2.5 氮摻雜碳球附載鉬單原子觸媒 (Mo-N4/d-C) 應用於 IOR 20 1.4.2.6 碳纖維紙 (CFP) 應用於 IOR 23 1.5 基於碳材的無金屬觸媒 (Carbon-based metal-free catalysts, CMCFs) 25 1.6 研究方向和動機 26 第2章 實驗設備/儀器 27 2.1 實驗設備及儀器 27 2.2 實驗藥品 29 第3章 實驗步驟 31 3.1 觸媒合成 31 3.1.1 不同碳化溫度之碳球合成 31 3.1.2 元素摻雜之碳球合成步驟 32 3.1.2.1 氮摻雜碳球 (N-doped carbon spheres, NCS) 及氮摻雜碳球觸媒電極 (NCS/TF) 的合成 32 3.1.2.2 氧摻雜碳球 (O-doped carbon spheres, OCS) 及氧摻雜碳球觸媒電極 (OCS/TF) 32 3.1.2.3 磷摻雜碳球 (P-doped carbon spheres, PCS) 及磷摻雜碳球觸媒電極 (PCS/TF) 33 3.1.2.4 硫摻雜碳球 (S-doped carbon spheres, SCS) 及硫摻雜碳球觸媒電極 (SCS/TF) 34 3.1.3 硫摻雜量優化之碳球合成 (2SCS及2SCS/TF) 35 3.2 實驗儀器原理 36 3.2.1 高解析度場發射掃描式電子顯微鏡 (FE-SEM) 36 3.2.2 X 光吸收光譜 (X-ray absorption spectroscopy, XAS) 36 3.2.3 X 光光電子光譜 (X-ray photoelectron spectroscopy, XPS) 38 3.2.4 元素分析儀 (Elemental analyzer, EA) 38 3.2.5 拉曼光譜儀 (Raman spectroscopy) 39 3.2.6 傅立葉轉換紅外光譜 (Fourier-transform infrared spectroscopy, FTIR) 40 3.2.7 紫外-可見光光譜 (Ultraviolet-visible spectroscopy, UV-Vis) 41 3.2.8 全自動比表面積及孔徑分析儀 (Surface Area and Pore size distribution Analyzer) 41 3.3 電化學系統及測試 43 3.3.1 循環伏安法 (Cyclic voltammetry, CV) 43 3.3.2 線性伏安法 (Linear sweep voltammetry, LSV) 44 3.3.3 計時電位法 (Chronopotentiometry, CP) 45 3.3.4 流動式系統膜電極組 (Membrane electrode assembly, MEA) 46 3.4 碘萃取實驗-活性碳吸附法 47 第4章 結果與討論 49 4.1 碳球碳化溫度在 IOR 上的影響 49 4.1.1 結構鑑定 49 4.1.1.1 SEM 影像-形貌確認 49 4.1.1.2 光譜分析-結構、鍵結環境及電子結構 50 4.1.2 元素含量分析 56 4.1.3 IOR 活性表現 57 4.2 元素摻雜碳球在 IOR 上的影響 59 4.2.1 結構鑑定 59 4.2.1.1 SEM 影像-形貌確認 59 4.2.1.2 光譜分析-鍵結環境及電子結構 60 4.2.2 元素含量分析 66 4.2.3 IOR活性表現 67 4.3 硫摻雜量優化在 IOR 上的影響 71 4.3.1 結構鑑定 71 4.3.1.1 SEM 影像-形貌確認 71 4.3.1.2 BET 表面積分析 72 4.3.1.3 光譜分析-鍵結環境 73 4.3.2 元素摻雜量分析 76 4.3.3 IOR 活性表現 77 4.4 IOR 膜電極組反應器穩定性測試 80 4.4.1 膜電極組 (Membrane electrode assembly, MEA) 反應參數設計 80 4.4.2 IOR 穩定性測試 81 4.5 文獻比較 83 4.6 碘的純化及定量分析 86 4.6.1 碘的純化 86 4.6.1.1 活性碳吸附法 86 4.6.1.2 其他方法 88 4.6.2 定量分析 88 4.6.2.1 UV-Vis 吸收法 88 4.6.2.2 多倫試劑 (Tollens' reagent) 92 4.6.3 實驗困難及挑戰 94 4.7 實驗限制及未來改善方式 96 第5章 結論 99 第6章 未來展望 101 第7章 參考文獻 103 附錄 論文發表及研討會參與 111

[1] https://www.havayar.com/en/products/water-electrolysis-package/
[2] J. Ge, Z. Liu, M. Guan, J. Kuang, Y. Xiao, Y. Yang, C.H. Tsang, X. Lu, C. Yang, Investigation of the electrocatalytic mechanisms of urea oxidation reaction on the surface of transition metal oxides, J Colloid Interface Sci. 620 (2022) 442–453. https://doi.org/10.1016/j.jcis.2022.03.152.
[3] D. Zhu, H. Zhang, J. Miao, F. Hu, L. Wang, Y. Tang, M. Qiao, C. Guo, Strategies for designing more efficient electrocatalysts towards the urea oxidation reaction, J Mater Chem A Mater. 10 (2022) 3296–3313. https://doi.org/10.1039/d1ta09989b.
[4] H. Li, Y. Pan, D. Zhang, Y. Han, Z. Wang, Y. Qin, S. Lin, X. Wu, H. Zhao, J. Lai, B. Huang, L. Wang, Surface oxygen-mediated ultrathin PtRuM (Ni, Fe, and Co) nanowires boosting methanol oxidation reaction, J Mater Chem A Mater. 8 (2020) 2323–2330. https://doi.org/10.1039/c9ta11745h.
[5] S. Lu, H. Li, J. Sun, Z. Zhuang, Promoting the methanol oxidation catalytic activity by introducing surface nickel on platinum nanoparticles, Nano Res. 11 (2018) 2058–2068. https://doi.org/10.1007/s12274-017-1822-x.
[6] F. Vitse, M. Cooper, G.G. Botte, On the use of ammonia electrolysis for hydrogen production, J Power Sources. 142 (2005) 18–26. https://doi.org/10.1016/j.jpowsour.2004.09.043.
[7] S. Narayanan, W. Chun, B. Jeffries-Nakamura, T.I. Valdez, NASA Tech. Briefs 26 (2002) 19., 2003.
[8] T. Take, K. Tsurutani, M. Umeda, Hydrogen production by methanol-water solution electrolysis, J Power Sources. 164 (2007) 9–16. https://doi.org/10.1016/j.jpowsour.2006.10.011.
[9] W. Yan, D. Wang, G.G. Botte, Electrochemical decomposition of urea with Ni-based catalysts, Appl Catal B. 127 (2012) 221–226. https://doi.org/10.1016/j.apcatb.2012.08.022.
[10] Y.X. Chen, A. Lavacchi, H.A. Miller, M. Bevilacqua, J. Filippi, M. Innocenti, A. Marchionni, W. Oberhauser, L. Wang, F. Vizza, Nanotechnology makes biomass electrolysis more energy efficient than water electrolysis, Nat Commun. 5 (2014) 4036. https://doi.org/10.1038/ncomms5036.
[11] L. Wang, V. Bambagioni, M. Bevilacqua, C. Bianchini, J. Filippi, A. Lavacchi, A. Marchionni, F. Vizza, X. Fang, P.K. Shen, Sodium borohydride as an additive to enhance the performance of direct ethanol fuel cells, J Power Sources. 195 (2010) 8036–8043. https://doi.org/10.1016/j.jpowsour.2010.06.101.
[12] D.B. Adam, M.C. Tsai, Y.A. Awoke, W.H. Huang, Y.W. Yang, C.W. Pao, W.N. Su, B.J. Hwang, Iodide Oxidation Reaction Catalyzed by Ruthenium-Tin Surface Alloy Oxide for Efficient Production of Hydrogen and Iodine Simultaneously, ACS Sustain Chem Eng. 9 (2021) 8803–8812. https://doi.org/10.1021/acssuschemeng.1c01867.
[13] https://www.vatronix.com/item/overview-of-polarizer-manufacturing-technology
[14] https://www.lightpolymers.com/technology/
[15] L. Pang, H. Wang, Inorganic Aqueous Anionic Redox Liquid Electrolyte for Supercapacitors, Adv Mater Technol. 7 (2022) 2100501. https://doi.org/10.1002/admt.202100501.
[16] B.N. Grgur, M.M. Gvozdenović, J.S. Stevanović, B.Z. Jugović, L.T. Trišović, Electrochemical oxidation of iodide in aqueous solution, Chemical Engineering Journal. 124 (2006) 47–54. https://doi.org/10.1016/j.cej.2006.08.028.
[17] V.W. Truesdale, G.W. Luther, J.E. Greenwood, The kinetics of iodine disproportionation: A system of parallel second-order reactions sustained by a multi-species pre-equilibrium, Physical Chemistry Chemical Physics. 5 (2003) 3428–3435. https://doi.org/10.1039/b303351a.
[18] I.S. El-Hallag, ELECTROCHEMICAL OXIDATION OF IODIDE AT A GLASSY CARBON ELECTRODE IN METHYLENE CHLORIDE AT VARIOUS TEMPERATURES, J. Chil. Chem. Soc. 55 (2010) 67–73.
[19] D.B. Adam, M.C. Tsai, Y.A. Awoke, W.H. Huang, C.H. Lin, T. Alamirew, A.A. Ayele, Y.W. Yang, C.W. Pao, W.N. Su, B.J. Hwang, Engineering self-supported ruthenium-titanium alloy oxide on 3D web-like titania as iodide oxidation reaction electrocatalyst to boost hydrogen production, Appl Catal B. 316 (2022) 121608. https://doi.org/10.1016/j.apcatb.2022.121608.
[20] T.A. Dessie, W.H. Huang, D.B. Adam, Y.A. Awoke, C.H. Wang, J.L. Chen, C.W. Pao, N.G. Habtu, M.C. Tsai, W.N. Su, B.J. Hwang, Efficient H2Evolution Coupled with Anodic Oxidation of Iodide over Defective Carbon-Supported Single-Atom Mo-N4Electrocatalyst, Nano Lett. 22 (2022) 7311–7317. https://doi.org/10.1021/acs.nanolett.2c01229.
[21] S.-M. Peng, S.B. Patil, C.-C. Chang, S.-T. Chang, Y.-C. Chen, K.-C. Wu, W.-N. Su, B.J. Hwang, D.-Y. Wang, Fast charge transfer between iodide ions and a delocalized electron system on the graphite surface for boosting hydrogen production, J Mater Chem A Mater. (2022) 23982–23989. https://doi.org/10.1039/d2ta06517g.
[22] S. Zhao, D.W. Wang, R. Amal, L. Dai, Carbon-Based Metal-Free Catalysts for Key Reactions Involved in Energy Conversion and Storage, Advanced Materials. 31 (2019) 1801526. https://doi.org/10.1002/adma.201801526.
[23] S. Mondal, B. Mohanty, M. Nurhuda, S. Dalapati, R. Jana, M. Addicoat, A. Datta, B.K. Jena, A. Bhaumik, A Thiadiazole-Based Covalent Organic Framework: A Metal-Free Electrocatalyst toward Oxygen Evolution Reaction, ACS Catal. 10 (2020) 5623–5630. https://doi.org/10.1021/acscatal.9b05470.
[24] M.A. Wahab, J. Joseph, L. Atanda, U.K. Sultana, J.N. Beltramini, K. Ostrikov, G. Will, A.P. O’Mullane, A. Abdala, Nanoconfined Synthesis of Nitrogen-Rich Metal-Free Mesoporous Carbon Nitride Electrocatalyst for the Oxygen Evolution Reaction, ACS Appl Energy Mater. 3 (2020) 1439–1447. https://doi.org/10.1021/acsaem.9b01876.
[25] I. Masood ul Hasan, L. Peng, J. Mao, R. He, Y. Wang, J. Fu, N. Xu, J. Qiao, Carbon-based metal-free catalysts for electrochemical CO2 reduction: Activity, selectivity, and stability, Carbon Energy. 3 (2021) 24–49. https://doi.org/10.1002/cey2.87.
[26] C. Hu, L. Dai, Kohlenstoffbasierte Metallfreie Katalysatoren für die Elektrokatalyse jenseits der ORR, Angewandte Chemie. 128 (2016) 11910–11933. https://doi.org/10.1002/ange.201509982.
[27] S. Zhao, D.W. Wang, R. Amal, L. Dai, Carbon-Based Metal-Free Catalysts for Key Reactions Involved in Energy Conversion and Storage, Advanced Materials. 31 (2019) 1801526. https://doi.org/10.1002/adma.201801526.
[28] L. Jie, D. Ying, S. Yuyu, Antimicrobial activity and biocompatibility of polyurethaneg-iodine complexes, J Bioact Compat Polym. 25 (2010) 185–206. https://doi.org/10.1177/0883911509359980.
[29] J. Dijksterhuis, M. Meijer, T. van Doorn, R. Samson, E. Rico-Munoz, Inactivation of stress-resistant ascospores of Eurotiales by industrial sanitizers, Int J Food Microbiol. 285 (2018) 27–33. https://doi.org/10.1016/j.ijfoodmicro.2018.06.018.
[30] M. Zhang, H. Yang, Y. Liu, X. Sun, D. Zhang, D. Xue, Hydrophobic precipitation of carbonaceous spheres from fructose by a hydrothermal process, Carbon N Y. 50 (2012) 2155–2161. https://doi.org/10.1016/j.carbon.2012.01.024.
[31] Y. Yang, J. Song, Y. Li, X. Liu, B. Xu, Synthesis and optical property of P3HT/carbon microsphere composite film, J Mater Res. 28 (2013) 998–1003. https://doi.org/10.1557/jmr.2012.363.
[32] Z. Yi, Y. Liang, X. Lei, C. Wang, J. Sun, Low-temperature synthesis of nanosized disordered carbon spheres as an anode material for lithium ion batteries, Mater Lett. 61 (2007) 4199–4203. https://doi.org/10.1016/j.matlet.2007.01.054.
[33] E. Sulistya, L. Hui-Hui, N.K. Attenborough, S. Pourshahrestani, N.A. Kadri, E. Zeimaran, N.A. bin A. Razak, B. Amini Horri, B. Salamatinia, Hydrothermal synthesis of carbon microspheres from sucrose with citric acid as a catalyst: physicochemical and structural properties, Journal of Taibah University for Science. 14 (2020) 1042–1050. https://doi.org/10.1080/16583655.2020.1794566.
[34] X. Sun, Y. Li, Ga2O3 and GaN semiconductor hollow spheres, Angewandte Chemie - International Edition. 43 (2004) 3827–3831. https://doi.org/10.1002/anie.200353212.
[35] C. Su, Y. Liu, Z. Luo, J.P. Veder, Y. Zhong, S.P. Jiang, Z. Shao, Defects-rich porous carbon microspheres as green electrocatalysts for efficient and stable oxygen-reduction reaction over a wide range of pH values, Chemical Engineering Journal. 406 (2021) 126883. https://doi.org/10.1016/j.cej.2020.126883.
[36] H. Wu, J. Geng, H. Ge, Z. Guo, Y. Wang, G. Zheng, Egg-Derived Mesoporous Carbon Microspheres as Bifunctional Oxygen Evolution and Oxygen Reduction Electrocatalysts, Adv Energy Mater. 6 (2016) 1600794. https://doi.org/10.1002/aenm.201600794.
[37] S. Song, M. Wu, Y. Liu, Q. Zhu, P. Tsiakaras, Y. Wang, Efficient and Stable Carbon-coated Nickel Foam Cathodes for the Electro-Fenton Process, Electrochim Acta. 176 (2015) 811–818. https://doi.org/10.1016/j.electacta.2015.07.029.
[38] M. Zhang, Y. Duan, H. Jia, F. Wang, L. Wang, Z. Su, C. Wang, Defective graphitic carbon nitride synthesized by controllable co-polymerization with enhanced visible light photocatalytic hydrogen evolution, Catal Sci Technol. 7 (2017) 452–458. https://doi.org/10.1039/c6cy02318e.
[39] M. Tang, X. Jiang, M. He, N. Jiang, Q. Zheng, D. Lin, B (boron), O (oxygen) dual-doped carbon spheres as a high-efficiency electrocatalyst for nitrogen reduction, Int J Hydrogen Energy. 46 (2021) 439–448. https://doi.org/10.1016/j.ijhydene.2020.09.187.
[40] J. Wu, C. Jin, Z. Yang, J. Tian, R. Yang, Synthesis of phosphorus-doped carbon hollow spheres as efficient metal-free electrocatalysts for oxygen reduction, Carbon N Y. 82 (2015) 562–571. https://doi.org/10.1016/j.carbon.2014.11.008.
[41] Y. Sun, J. Wu, J. Tian, C. Jin, R. Yang, Sulfur-doped carbon spheres as efficient metal-free electrocatalysts for oxygen reduction reaction, Electrochim Acta. 178 (2015) 806–812. https://doi.org/10.1016/j.electacta.2015.08.059.
[42] L. Xia, X. Wu, Y. Wang, Z. Niu, Q. Liu, T. Li, X. Shi, A.M. Asiri, X. Sun, S-Doped Carbon Nanospheres: An Efficient Electrocatalyst toward Artificial N2 Fixation to NH3, Small Methods. 3 (2019) 1800251. https://doi.org/10.1002/smtd.201800251.
[43] M.K. Rabchinskii, V. V. Shnitov, D.Y. Stolyarova, S.A. Ryzhkov, M. V. Baidakova, E.Y. Lobanova, A. V. Shvidchenko, N.A. Besedina, D.A. Smirnov, Graphene oxide conversion into controllably carboxylated graphene layers via photoreduction process in the inert atmosphere, Fullerenes Nanotubes and Carbon Nanostructures. 28 (2020) 221–225. https://doi.org/10.1080/1536383X.2019.1686625.
[44] 元素分析儀原理簡介與儀器介紹 台灣大學理學院貴重儀器中心元素分析儀室 2021
[45] K.N. Kudin, B. Ozbas, H.C. Schniepp, R.K. Prud’homme, I.A. Aksay, R. Car, Raman spectra of graphite oxide and functionalized graphene sheets, Nano Lett. 8 (2008) 36–41. https://doi.org/10.1021/nl071822y.
[46] D.L. Pavia, G.M. Lampman, G.S. Kriz, J.R. Vyvyan, INTRODUCTION TO SPECTROSCOPY, 2013.
[47] T. Liu, R. Kavian, Z. Chen, S.S. Cruz, S. Noda, S.W. Lee, Biomass-derived carbonaceous positive electrodes for sustainable lithium-ion storage, Nanoscale. 8 (2016) 3671–3677. https://doi.org/10.1039/c5nr07064c.
[48] E. Hu, Y. Yao, Y. Chen, Y. Cui, Z. Wang, G. Qian, Boosting hydrogen generation by anodic oxidation of iodide over Ni-Co(OH)2nanosheet arrays, Nanoscale Adv. 3 (2021) 604–610. https://doi.org/10.1039/d0na00847h.
[49] M. Stojanovska, V.M. Petruševski, B. Šoptrajanov, The concept of sublimation – iodine as an example / El concepto de sublimación - El yodo como ejemplo.
[50] S.H. Jung, J.W. Yeon, Y. Kang, K. Song, Determination of triiodide ion concentration using UV-visible spectrophotometry, in: Asian Journal of Chemistry, Chemical Publishing Co., 2014: pp. 4084–4086. https://doi.org/10.14233/ajchem.2014.17720.
[51] S. V. Kireev, S.L. Shnyrev, Study of molecular iodine, iodate ions, iodide ions, and triiodide ions solutions absorption in the UV and visible light spectral bands, Laser Phys. 25 (2015) 075602. https://doi.org/10.1088/1054-660X/25/7/075602.
[52] J. Li, H. Zhang, T. Xue, Q. Xiao, T. Qi, J. Chen, Z. Huang, How to recover iodine more efficiently? Extraction of triiodide, Sep Purif Technol. 277 (2021) 119364. https://doi.org/10.1016/j.seppur.2021.119364.
[53] S. Karna, C. Saunders, R. Karna, D. Guragain, S. Mishra, P. Karna, Hydrothermal synthesis of carbon and sulfur mono-doped sodium tantalates, PeerJ Materials Science. 2 (2020) e10. https://doi.org/10.7717/peerj-matsci.10.
[54] D. Wu, T. Wang, L. Wang, D. Jia, Hydrothermal synthesis of nitrogen, sulfur co-doped graphene and its high performance in supercapacitor and oxygen reduction reaction, Microporous and Mesoporous Materials. 290 (2019) 109556. https://doi.org/10.1016/j.micromeso.2019.06.018.
[55] Y.Q. Shan, Z.X. Xu, P.G. Duan, H.L. Fan, X. Hu, R. Luque, Nitrogen- And sulfur-doped carbon obtained from direct hydrothermal carbonization of cellulose and ammonium sulfate for supercapacitor applications, ACS Sustain Chem Eng. 8 (2020) 15809–15814. https://doi.org/10.1021/acssuschemeng.0c05520.

QR CODE