簡易檢索 / 詳目顯示

研究生: 黃敬皓
Jing-Hao Huang
論文名稱: 鋼結構橋梁生命週期成本導向風險評估模式之研究
Cost-oriented Risk Assessment Model for Steel Bridge Life Cycle
指導教授: 鄭明淵
Min-Yuan Cheng
口試委員: 連立川
Li-Chuan Lien
謝佑明
Yo-Ming Hsieh
吳育偉
Yu-Wei Wu
鄭明淵
Min-Yuan Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 149
中文關鍵詞: 生命週期維護鋼結構橋梁檢測橋梁維護策略蒙地卡羅人工智慧ESIM
外文關鍵詞: Life cycle, safety inspection of the steel bridge, bridge Maintenance Strategy, Monte Carlo, Artificial Intelligence, ESIM
相關次數: 點閱:429下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 橋梁是重要的交通工程設施之一,因台灣多高山河川等特殊地貌,有時因技術的考量下,會採用施工快速且跨度施作範圍較長的鋼結構橋梁來進行施作。在自然環境方面,台灣經常發生颱風、地震、豪雨等自然現象,每次災害發生,皆會對鋼結構橋梁造成損傷。目前台灣地區現行的橋梁檢測方法以目視檢測為主,但是不容易診斷出地震、洪水、塗裝劣化與構件老化所造成的內部損傷,如何在鋼結構橋梁的生命週期中適當地進行補強作業,以防止風險成本的增加,避免影響用路人的安全是橋梁管理單位重要的課題。
    本研究同時考量可視老化與潛勢危害等因素,導入風險分析的概念,將鋼結構橋梁風險分成構件老化、塗裝劣化、洪水與地震四部分,運用蒙地卡羅模擬以及歷史案例的推估,分別求出各個風險因子的維護機率、頻率。透過建置歷史案例資料庫,並且導入橋梁量體推估、人工智慧以及損害比等方式,來推論出鋼結構橋梁不同風險的維護成本。接著導入風險期望值的概念,計算出鋼結構橋梁的綜合能力指標,橋梁管理單位在維護經費有限的情況下,可以依據鋼結構橋梁的綜合能力指標,來進行規劃鋼結構橋梁之維護時機與成本的維護順序,求得生命週期之維護總風險成本。


    Bridge is one of the most important traffic facilities. Due to Taiwan’s multi-mountain and multi-river geographical environment, sometimes construction department chooses the steel bridges considering the constraints of the technology. In the degree of natural environment, typhoon, earthquake, heavy rains and other natural phenomena happens a lot in Taiwan which causes disasters and damages the steel structures. For now, the most common way to inspect bridges is by visual inspection, but it is not easy to diagnose the internal damage caused by earthquakes, floods, painting degradation and aging of the components. How to properly reinforce the steel structure in the life cycle of steel bridges, and to prevent the increase in risk costs and avoid the impact of the safety of pedestrians is an important task of the bridge management unit.
    This study divides the steel structure bridge into three parts: aging, painting degradation, flood and earthquake considering both the factors of visual aging and potential hazards under the concept of risk analysis. Monte Carlo simulation and historical case estimation are applied to find the maintenance rate and frequency of each risk factor respectively.
    This model is able to figure out the maintenance costs of steel bridges using bridge volume estimation, artificial intelligence and harm ratio, etc. by the historical case database. The concept of risk expectation is introduced to calculate the comprehensive capacity index of the steel structure bridge. The bridge management unit can carry out the maintenance order of the steel structure bridge according to the comprehensive capacity index of the steel structure bridge under the condition of limited maintenance funds.
    Key words: Life cycle, safety inspection of the steel bridge, bridge Maintenance Strategy, Monte Carlo, Artificial Intelligence, ESIM

    目錄 摘要 Abstract III 致謝 V 目錄 VII 圖目錄 XI 表目錄 XIII 第一章 緒論 16 1.1研究背景與動機 16 1.2研究目的 17 1.3研究範圍與限制 18 1.4研究內容與流程 19 1.5論文架構 22 第二章 文獻回顧 24 2.1鋼結構橋梁維護管理 24 2.1.1橋梁檢測 25 2.1.2檢測評估 28 2.1.3鋼橋塗裝系統 36 2.1.4橋梁性能檢測 37 2.2橋梁維護風險分析 40 2.3人工智慧 41 2.3.1演化式支持向量機推論模式(ESIM) 41 2.3.1.1支持向量機簡介 42 2.3.2演化式支持向量機推論模式(Evolutionary Support Vector Machine Inference Model-ESIM) 51 2.7.3 ESIM特性與限制 53 2.7.3.1 ESIM特性 53 2.7.3.2 ESIM限制 53 2.7.4 ESIM應用 54 第三章鋼結構橋梁風險分析流程 56 3.1研究方法及步驟 56 3.2鋼結構橋梁風險辨識 57 3.3鋼結構橋梁風險評估模式 57 3.3.1鋼結構橋梁風險機率 58 3.3.2鋼結構橋梁維護成本 66 3.3.3鋼結構橋梁風險影響程度 71 3.4鋼結構橋梁綜合能力指標與維護排序 72 3.5鋼結構橋梁維護策略最佳化 73 第四章鋼結構橋梁風險機率 74 4.1鋼結構橋梁構件老化維護機率 76 4.1.1橋梁分類(依橋型) 76 4.1.2構件分類 76 4.1.3統計分析 77 4.1.4維護門檻訂定 78 4.1.5蒙地卡羅模擬-構件老化 79 4.1.6計算構件老化維護機率(PMD) 79 4.2鋼結構塗裝劣化維護頻率 81 4.2.1設定塗裝維護狀態 81 4.2.2選擇塗裝系統 81 4.2.3推算塗裝系統平均使用年限與維護頻率 81 4.3鋼結構橋梁洪水維護與重建機率 82 4.3.1橋梁分類 82 4.3.2統計分析 83 4.3.3洪水事件產生器 84 4.3.4維護門檻訂定 84 4.3.5蒙地卡羅模擬-洪水 85 4.3.5計算洪水維護機率(PMS) 85 4.3.6計算洪水重建機率(PS) 85 4.4鋼結構橋梁地震維護與重建機率 87 4.4.1潛勢地震發生機率模型 87 4.4.1.1震源型態之介紹 88 4.4.1.2建立地震目錄及研究對象 89 4.4.1.3平均規模與未來地震發生次數之公式 90 4.4.1.4 柏松與對數常態分佈之風險函數 91 4.4.1.5 臺灣未來50年與100年之地震發生機率 92 4.4.2性能曲線與容量震譜 93 4.4.3非線性動力分析模式 95 4.4.4蒙地卡羅模擬 96 4.4.5計算地震維護機率(PME)、計算地震重建機率(PE) 97 第五章 鋼結構橋梁風險影響程度 101 5.1構件老化造成風險影響程度 102 5.1.1維護程度之訂定 102 5.1.2案例資料建置 102 5.1.3補足橋梁維護成本資料 103 5.1.4推估橋梁各構件老化維護成本(CMD) 103 5.2塗裝劣化造成風險影響程度 105 5.2.1案例資料建置 105 5.2.2計算塗裝劣化維護成本 106 5.3洪水造成風險影響程度 107 5.3.1鋼結構橋梁維護因子評估與篩選 107 5.3.2建立鋼結構橋梁案例資料庫 109 5.3.3建置自調適鋼橋洪水維護成本推論模式(CMS、CRS) 110 5.3.3.1 模式參數設定 110 5.3.3.2 ESIM可行性分析 111 5.3.3.3 ESIM架構 111 5.3.4模式訓練與測試 112 5.3.5模式應用 115 5.4地震造成風險影響程度 115 5.4.1計算地震損害比 115 5.4.2計算地震維護成本與重建成本(CME、CRE) 117 5.5鋼結構橋梁綜合能力指標 118 第六章 鋼結構橋梁維護策略最佳化 120 6.1鋼結構單橋成本維護策略 121 6.2共生生物演算法 123 6.3鋼結構橋梁單橋管理策略訂定 127 第七章 結論與建議 143 7.1結論 143 7.2建議 144 參考文獻 145

    [1]交通部, 公路養護規範. 2003.
    [2]邱建國 and 鄭明淵, 橋梁殘餘壽齡與保全評估決策模式之研發 (2/4). 交通部運輸研究所港灣技術研究中心, 2012.
    [3]林正軒, "橋梁生命週期維護策略最佳化模式之研究," 碩士論文, 國立台灣科技大學營建工程系, 2013.
    [4]徐梓隆, "群橋生命週期維護策略最佳化模式之研究," 碩士論文, 國立台灣科技大學營建工程系, 2014.
    [5]M.-Y. Cheng and D. Prayogo, "Symbiotic organisms search: a new metaheuristic optimization algorithm," Computers & Structures, vol. 139, pp. 98-112, 2014.
    [6]公路養護手冊. 交通部公路總局, 2012.
    [7]李有豐, 林安彥, and 土木工程, 橋樑檢測評估與補強. 全華圖書, 2011.
    [8]農村再生設施施工規範. 行政院農業委員會水土保持局, 2016.
    [9]交通部, "公路鋼結構橋樑之檢測及補強規範, 交通部," 2006.
    [10]M.-Y. Cheng and C. Ko, "Computer-aided decision support system for disaster prevention of hillside residents," in Proceedings of the 17th IAARC/CIB/IEEE/IFAC/IFR International Symposium on Automation and Robotics in Construction, Taipei, Taiwan, 2000, pp. 587-592.
    [11]K. Fukahori and Y. Kubota, "Consistency evaluation of landscape design by a decision support system," Computer‐Aided Civil and Infrastructure Engineering, vol. 15, no. 5, pp. 342-354, 2000.
    [12]S. Sundin and C. Braban‐Ledoux, "Artificial intelligence–based decision support technologies in pavement management," Computer‐Aided Civil and Infrastructure Engineering, vol. 16, no. 2, pp. 143-157, 2001.
    [13]M.-Y. Cheng and Y.-W. Wu, "Evolutionary support vector machine inference system for construction management," Automation in Construction, vol. 18, no. 5, pp. 597-604, 2009.
    [14]M.-Y. Cheng, P. M. Firdausi, and D. Prayogo, "High-performance concrete compressive strength prediction using Genetic Weighted Pyramid Operation Tree (GWPOT)," Engineering Applications of Artificial Intelligence, vol. 29, pp. 104-113, 2014.
    [15]M.-Y. Cheng, D. Prayogo, and Y.-W. Wu, "Novel genetic algorithm-based evolutionary support vector machine for optimizing high-performance concrete mixture," Journal of Computing in Civil Engineering, vol. 28, no. 4, p. 06014003, 2013.
    [16]M.-Y. Cheng, D. K. Wibowo, D. Prayogo, and A. F. Roy, "Predicting productivity loss caused by change orders using the evolutionary fuzzy support vector machine inference model," Journal of Civil Engineering and Management, vol. 21, no. 7, pp. 881-892, 2015.
    [17]M.-Y. Cheng, N.-D. Hoang, and Y.-W. Wu, "Hybrid intelligence approach based on LS-SVM and Differential Evolution for construction cost index estimation: A Taiwan case study," Automation in Construction, vol. 35, pp. 306-313, 2013.
    [18]M.-Y. Cheng and A. F. Roy, "Evolutionary fuzzy decision model for cash flow prediction using time-dependent support vector machines," International Journal of Project Management, vol. 29, no. 1, pp. 56-65, 2011.
    [19]M.-Y. Cheng and M.-T. Cao, "Evolutionary multivariate adaptive regression splines for estimating shear strength in reinforced-concrete deep beams," Engineering Applications of Artificial Intelligence, vol. 28, pp. 86-96, 2014.
    [20]鄧乃楊, "數據挖掘的新方法─ 支持向量機," 科學出版社, 中國, 2004.
    [21]Y. B. Dibike, S. Velickov, D. Solomatine, and M. B. Abbott, "Model induction with support vector machines: introduction and applications," Journal of Computing in Civil Engineering, vol. 15, no. 3, pp. 208-216, 2001.
    [22]陳昭宏, "工程保險核保危險評估模式之研究," 1997.
    [23]J. rey Horn, N. Nafpliotis, and D. E. Goldberg, "Multiobjective optimization using the niched pareto genetic algorithm," IlliGAL report, no. 93005, pp. 61801-2296, 1993.
    [24]吳育偉 and 鄭明淵, "支持向量機最佳化模式-應用於營建管理決策," 第 11 屆營建工程與管理學術研討會, 2007.
    [25]T. Joachims, "Text categorization with support vector machines: Learning with many relevant features," Machine learning: ECML-98, pp. 137-142, 1998.
    [26]鄭國宏, "都會區鋼結構橋梁生命週期成本評估系統研究," 碩士論文, 國立台灣科技大學營建工程系, 2017.
    [27]邱建國, "鋼構橋梁生命週期成本分析與應用," 國立台灣科技大學營建工程系, 2017.
    [28]溫國樑、簡文郁、張毓文, 最具潛勢及歷史災害地震之強地動模擬. 國家地震工程研究所, 2005.
    [29]張容瑋, "自調適橋梁整體耐震能力推論模式在橋梁防災預警之應用," 碩士論文, 國立台灣科技大學營建工程系, 2017.
    [30]鄭明淵, 歐昱辰, 李維峰, 邱建國, and 廖國偉, 橋梁通阻檢測分析模式建立之研究. 交通部運輸研究所港灣技術研究中心, 2010.
    [31]H. Elbehairy, Bridge management system with integrated life cycle cost optimization. 2007.
    [32]B. Gutenberg and C. F. Richter, "Frequency of earthquakes in California," Bulletin of the Seismological Society of America, vol. 34, no. 4, pp. 185-188, 1944.
    [33]S. Das, V. Gupta, and V. Srimahavishnu, "Damage‐based design with no repairs for multiple events and its sensitivity to seismicity model," Earthquake engineering & structural dynamics, vol. 36, no. 3, pp. 307-325, 2007.
    [34]國家地震工程研究中心, 最具潛勢及歷史災害地震之強地動模擬. 國家地震工程研究中心, 2005.
    [35]Y.-J. Park and A. H.-S. Ang, "Mechanistic seismic damage model for reinforced concrete," Journal of structural engineering, vol. 111, no. 4, pp. 722-739, 1985.
    [36]吳育偉, "物件導向演化式支持向量機推論模式於營建管理決策之研究," 2008.
    [37]J.-S. Chou, "Cost simulation in an item-based project involving construction engineering and management," International Journal of Project Management, vol. 29, no. 6, pp. 706-717, 2011.
    [38]T. C. McCormack and F. N. Rad, "An earthquake loss estimation methodology for buildings based on ATC-13 and ATC-21," Earthquake Spectra, vol. 13, no. 4, pp. 605-621, 1997.
    [39]C. A. Kircher, R. V. Whitman, and W. T. Holmes, "HAZUS earthquake loss estimation methods," Natural Hazards Review, vol. 7, no. 2, pp. 45-59, 2006.

    QR CODE