簡易檢索 / 詳目顯示

研究生: 姜政綸
Jheng-lun Jiang
論文名稱: 風力發電場於雷擊下之暫態分析與防護
Transient Analysis and Protection of Wind Farms under Lightning Strokes
指導教授: 張宏展
Hong-chan Chang
口試委員: 陳建富
Jiann-fuh Chen
陳財榮
Tsair-rong Chen
吳瑞南
Ruay-nan Wu
陳鴻誠
Hung-cheng Chen
辜志承
Jyh-cherng Gu
郭政謙
Cheng-chien Kuo
蕭弘清
Horng-ching Hsiao
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 117
中文關鍵詞: 風力發電機風力發電場雷擊匯流排型式電磁暫態程式
外文關鍵詞: Wind Turbine, Wind Farm, Lightning, Bus Types, Electro-magnetic Transients Program (EMTP)
相關次數: 點閱:311下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

台灣因缺乏天然資源,需進口之能源供給高達99 %,故再生能源之建置有其必要性。據台電公司統計2011年發電總裝置容量中,再生能源僅占同期總發電量的2.6 %,顯示我國目前仍高度依賴化石能源。在2011年11月宣布之新能源政策發展規劃中,以「千架海陸風力機」計畫列為再生能源規劃重點之一,預計於2030年達4,200 MW。而在全球再生能源領域規劃中,風力發電機亦為重點項目之一,故如何因應風力發電機(場)未來大規模建置,其併聯至電力系統有何影響,及考量台灣處於高落雷區域特性,如何規劃防雷對策,實為不容小覷之重要議題。
本論文針對在地化之風機結構、落雷資訊與配電系統型式等內容進行通盤考量,利用ATP-EMTP進行雷擊發生之暫態特性研析,以提供適用於台灣地區之雷擊防護建議。於案例模擬與分析上,分成三個主題進行探討。首先,據IEC TR 61400-24統計雷擊最常造成風機之控制系統損壞,故綜合考量雷擊電流峰值為24 kA、40 kA、上升/持續時間為5/20 μs、接地電阻為2 Ω、5 Ω或10 Ω、塔架與控制設備接地方式等因素,分析其對於風機控制系統之影響。其次,模擬單一風機併聯至69 kV/161 kV匯流排系統中,綜合考量風機變壓器避雷器裝設情形、風機與匯流排連接距離、及輻射狀、迴路狀匯流排或雙匯流排等因素,分析雷擊擊中風機時,對於系統端與用戶端之影響程度。最後,模擬風場併聯至161 kV匯流排系統中,綜合考量風機連接數量為1台至5台、各台風機接地互連情形、及不同匯流排型式等因素,同樣分析對系統端與用戶端之影響程度。綜上研究內容,以提出對風機、匯流排端與用戶端之雷擊防護建議。


Lacking natural resources and dependent on imports for over 99 % of its energy supply, renewable energy development is a priority for Taiwan. According to Taiwan Power Company (Taipower), renewable energy composed only 2.6 % of total power generation device capacity in 2011, revealing Taiwan’s continued dependence on fossil fuels. In the development plan for Taiwan’s new energy policy published in November 2011, the Thousand Wind Turbines program became a crucial element in renewable-energy planning, and it is estimated that this plan will generate 4,200 MW by 2030. Wind turbines are also a critical element in plans in the global renewable-energy sector. Therefore, responding to the massive development of wind turbine (farms), the effects of connecting these turbines to the power system, and planning lightning protection measures considering Taiwan’s geographic location in an area of frequent lightning strikes are all critical topics that must be examined.
Considering local wind turbine structures, information on lightning, and power distribution system types, this study uses ATP-EMTP to analyze the transient characteristics of lightning generation and provides Taiwan-specific suggestions for lightning protection. In this paper, case simulation and analysis is divided and examined in three topics. First, IEC TR 61400-24 statistics demonstrate that lightening most commonly damages the control systems of wind turbines. Consequently, this paper analyzes the impact of lightning strikes on the control system of wind turbine, considering peak values 24 kA and 40 kA of lightning currents and rise/duration periods of 5/20 μs, grounding resistance 2 Ω, 5 Ω or 10 Ω, and tower and control equipment grounding methods. A single wind turbine connected to a 69 kV/161 kV bus system is then simulated to analyze the extent of the impact on the system terminal and on the user terminal when lightning strikes a wind turbine examining the wind turbine transformer and arrester conditions, the distance of the turbine-bus connection, and radial, loop or double bus types. Finally, an entire wind farm connected to a 161 kV bus system is simulated to analyze the extent of the impact on the system terminal and user terminal considering one to five wind turbines connected together, the interconnection conditions regarding the ground of various wind turbines, and different bus types. Overall, wind turbines, bus terminals, and user terminals presented in this study could provide reference for lightning protection.

中文摘要 Abstract 致  謝 目  錄 符號索引 圖 目 錄 表 目 錄 第一章 緒  論  1.1 研究背景與動機  1.2 本文貢獻  1.3 研究步驟  1.4 章節概要 第二章 雷擊與風機系統之模型建立  2.1 前言  2.2 ATP-EMTP 模擬軟體簡介  2.3 雷擊簡介   2.3.1  雷擊電流函數   2.3.2  雷擊電流參數   2.3.3  雷擊電流統計數據   2.3.4  雷擊模型  2.1 風力發電機塔架與控制線模型   2.1.1  風力發電機塔架模型   2.1.2  風力發電機控制線模型   2.1.3  分布電容參數計算  2.2 電力電纜簡介   2.2.1  電力電纜參數   2.2.2  電力電纜模型  2.3 避雷器模型  2.4 系統等效電源模型 第三章 雷擊對於風機控制系統之暫態分析  3.1 前言  3.2 模擬條件設定  3.3 模擬案例   3.3.1  控制線路絕緣層之暫態電壓分布   3.3.2  控制設備上之暫態電壓   3.3.3  塔架耦合至控制線之電壓  3.4 本章結論 第四章 雷擊對於風機及併聯系統之暫態分析  4.1 前言  4.2 系統架構  4.3 模擬案例   4.3.1  雷擊對於風機併聯至69 kV或161 kV匯流排之影響   4.3.2  雷擊對於風機併聯至不同型式之161 kV匯流排的影響  4.4 本章結論 第五章 雷擊對於風場及併聯系統之暫態分析  5.1 前言  5.2 系統架構  5.3 模擬案例   5.3.1  雷擊對於風場併聯至161 kV輻射狀匯流排之影響   5.3.2  雷擊對於風場併聯至161 kV迴路狀匯流排之影響   5.3.3  雷擊對於風場併聯至161 kV雙匯流排之影響  5.4 本章結論 第六章 雷擊防護建議  6.1 風力發電機之雷擊防護建議  6.2 風力發電場之雷擊防護建議  6.3 匯流排與用戶端之雷擊防護建議 第七章 結論與未來展望  7.1 結論  7.2 未來展望 參考文獻 作者簡介

[1] 台灣電力公司永續報告書,台灣電力公司,2012年8月。
Available: http://www.taipower.com.tw/
[2] 永續能源政策綱領,經濟部能源局,2008年6月。
Available: http://web3.moeaboe.gov.tw/
[3] 綠色能源產業旭升方案,經濟部能源局,2009年4月。
[4] 「綠色能源產業旭升方案」行動計畫(核定本),經濟部能源局,2009年10月。
[5] 2012年能源產業技術白皮書,經濟部能源局,2012年5月。
[6] 確保核安 穩健減核 打造綠能低碳環境 逐步邁向非核家園,經濟部能源局,2011年11月。
[7] World Wind Energy Report 2011, World Wind Energy Association (WWEA), May 2012. Available: http://www.wwindea.org/
[8] Half-year Report 2012, World Wind Energy Association (WWEA), Oct. 2012. Available: http://www.wwindea.org/
[9] 10 Year Global Wind Speed Rankings, 4C Offshore, Dec. 2012.
Available: http://www.4coffshore.com/windfarms/windspeeds.aspx
[10] 千架海陸風力機-風力資訊整合平台,經濟部能源局暨工業技術研究院綠能與環境研究所,Dec. 2012.
Available: http://wind.itri.org.tw/index.aspx
[11] 顏世雄,避雷工程講義,台北巿,全華圖書公司,2007年5月。
[12] IEC TR 61400-24, “Wind Turbine Generator System-Part 24: Lightning Protection,” First edition, 2002-2007.
[13] S. Yokoyama, “Lightning Protection of Wind Turbine Blades,” Electric Power Systems Research, Vol. 94, pp. 3-9, Jan. 2013.
[14] U. S. Department of Energy - EPRI Wind Turbine Verification Program, “Iowa/Nebraska Distributed Wind Generation Projects First and Second-Year Operating Experience: 1999-2001,” Final Report, Dec. 2001.
[15] U. S. Department of Energy - EPRI Wind Turbine Verification Program, “Green Mountain Power Wind Power Project First-Year Operating Experience: 1997-1998,” Final Report, Dec. 1998.
[16] U. S. Department of Energy - EPRI Wind Turbine Verification Program, “Green Mountain Power Wind Power Project Second-Year Operating Experience: 1998-1999,” Final Report, Dec. 1999.
[17] U. S. Department of Energy - EPRI Wind Turbine Verification Program, “Green Mountain Power Wind Power Project Third-Year Operating Experience: 1999-2000,” Final Report, Dec. 2000.
[18] R. B. Rodrigues, V. M. F. Mendes, J. P. S. Catalao, “Protection of Wind Energy Systems Against the Indirect Effects of Lightning,” Renewable Energy, Vol. 36, No. 11, pp. 2888-2896, Nov. 2011.
[19] R. B. Rodrigues, V. M. F. Mendes, J. P. S. Catalao, “Protection of Interconnected Wind Turbines Against Lightning Effects: Overvoltages and Electromagnetic Transients Study,” Renewable Energy, Vol. 46, pp. 232-240, Oct. 2012.
[20] Yoh Yasuda, Naoki Uno, Hayato Kobayashi, Toshihisa Funabashi, “Surge Analysis on Wind Farm When Winter Lightning Strikes,” IEEE Transactions on Energy Conversion, Vol. 23, No. 1, pp. 257-262, Mar. 2008.
[21] Yoh Yasuda, Takehisa Hara, Toshihisa Funabashi, “Analysis of Lightning Surge Propagation in Wind Farm,” Electrical Engineering in Japan, Vol. 162, No. 2, pp. 30-38, Jan. 2008.
[22] Yoh Yasuda, Toshihisa Funabashi, “Transient Analysis on Wind Farm Suffered from Lightning,” 39th International Universities Power Engineering Conference, Vol. 1, Sep. 2004, pp. 202-206.
[23] W. Xiaohui, Z. Xiaoqing, Y. Dasheng, “An Efficient Algorithm of Transient Responses on Wind Turbine Towers Struck by Lightning” The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 28, No. 2, pp. 372-384, 2009.
[24] W. S. Meyer, L. H. Liu, EMTP Rule Book, Bonneville Power Administration, Portland, OR 97208.99.
[25] Modeling Power Electronics in Power System Using EMTP, Course Note, San Francisco, CA, University of Minnesota, 1994.
[26] Laszlo Prikler, Hans Kristian Hoidalen, ATPDRAW Users' Manual, Version 5.6, Nov. 2009.
[27] 王琮賢,「線路用避雷器於塔腳電阻變化之可行性研究」,碩士論文,國立台灣科技大學電機工程系,2006年。
[28] 黃政凱,「風力發電系統之雷擊暫態分析」,碩士論文,國立台灣科技大學電機工程系,2008年。
[29] 楊天皓,「電力開關場之鐵磁共振與開關突波分析」,碩士論文,國立台灣科技大學電機工程系,2008年。
[30] 曾偉倫,「並聯電抗器用之氣體絕緣斷路器啟閉特性研究」,碩士論文,國立台灣科技大學電機工程系,2003年。
[31] 姜政綸、葉增雄、林建志,「在ATPDraw環境下之電力電子及其控制電路模擬」,第五屆台灣電力電子研討會,台灣雲林,2006年9月,pp.1054-1058。
[32] 葉增雄、翁國哲、姜政綸、林建志,「靜態同步補償器之詳細模型與虛功補償模擬」,96年度台灣電力公司節約能源論文專輯,台灣苗栗,2007年4月。
[33] F. Heidler, “Traveling Current Source Model for LEMP Calculation,” Proceedings of the 6th International Symposium on Electromagnetic Compatibility, Zurich, Switzerland, 1985, pp. 157-162.
[34] F. Heidler, J. M. Cvetić, B. V. Stanić, “Calculation of Lightning Current Parameters,” IEEE Transactions on Power Delivery, Vol. 14, No. 2, pp. 399-404, Apr. 1999.
[35] Y. Chen, S. Liu, X. Wu, F. Zhang, “A New Kind of Lightning Channel-Base Current Function,” 3rd International Symposium on Electromagnetic Compatibility, May 2002, pp. 304-307.
[36] William C. Hart, Edgar W. Malone, Lightning and Lightning Protection, Interference Control Technologies, Inc., Gainesville, Virginia, 1979.
[37] Y. A. Liou, S. K. Kar, “Study of Cloud-to-Ground Lightning and Precipitation and Their Seasonal and Geographical Characteristics over Taiwan,” Atmospheric Research, Vol. 95, pp. 115-122, 2010.
[38] 蔡篤敬,「落雷檢測系統簡介」,台灣電力綜合研究所試驗中心,台灣台北,1991年。
[39] 陳以彥,「台灣落雷資訊系統」,台電工程月刊,第741期,第70-78頁,2010年。
[40] IEC 61400-24, “Wind turbines- Part 24: Lightning protection,” Edition 1.0, 2010.
[41] Takamitsu Ito, Toshiaki Ueda, Hideto Watanabe, Toshihisa Funabashi, Akihiro Ametani, “Lightning Flashovers on 77-kV Systems: Observed Voltage Bias Effects and Analysis,” IEEE Transactions on Power Delivery, Vol. 18, No. 2, pp. 545-550, Apr. 2003.
[42] T. Yamada, A. Mochizuki, J. Sawada, E. Zaima, T. Kawamura, A. Ametani, M. Ishii, S. Kato, “Experimental Evaluation of a UHV Tower Model for Lightning Surge Analysis,” IEEE Transactions on Power Delivery, Vol. 10, No. 1, pp. 393-402, Jan. 1995.
[43] H. X. Zhao, X. R. Wang, “Overvoltage Analysis of Wind Turbines due to Lightning Stroke,” Power System Technology, Vol. 28, No. 4, pp. 27-29, Feb. 2004.
[44] 連裕豐,“洞道中超高壓地下電力系統之設計”,碩士論文,台灣科技大學電機工程系,2005年。
[45] 陳輔賢,“應用音射法於電纜接頭瑕疵型態之局部放電辨識研究”,博士論文,台灣科技大學電機工程系,2012年。
[46] 張建國,“高電壓地下電纜接頭絕緣狀態之監測與診斷系統之研究”,博士論文,台灣科技大學電機工程系,2012年。
[47] 台灣電力公司業務處,「地下配電線路設計,配電技術手冊(四)」,1996年。
[48] XLPE AC Land Cable Systems User’s Guide, ABB, Oct. 2006, [Online]. Available: http://www.abb.com/
[49] J. A. Martinez, D. W. Durbak, “Parameter Determination for Modeling Systems Transients-Part V: Surge Arresters,” IEEE Transactions on Power Delivery, Vol. 20, No.3, pp. 2073-2078, July 2005.
[50] 范振理、楊金石、廖清榮、鄭強、王念中,“開關突波與鐵磁共振對彰工電廠開關場及變壓器設備之影響評估與預防對策研究”,綜合研究所高壓實驗室,2005年。
[51] 林榮貴,「我國既有大型風力機組故障原因探討分析」,機械月刊,第三十七卷,第十期,第62-72頁,2011年10月。
[52] IEC 62305-1, “Protection against lightning- Part 1: General principles,” Edition 2.0, 2010.
[53] B. Glushakow, “Effective Lightning Protection for Wind Turbine Generators,” IEEE Transactions on Energy Conversion, Vol. 22, No. 1, pp. 214-222, Mar. 2007.
[54] Newman Malcolm, Raj K. Aggarwal, “Transient Overvoltage Study of an Island Wind Farm,” 2012 47th International Universities Power Engineering Conference (UPEC), Sep. 2012, pp. 1-6.
[55] IEC 60076-11, “Power transformers - Part 11: Dry-type transformers,” 2004.
[56] B. Vahidi, O. Alizadeh Mousavi, S. H. Hosseinian, “Lightning Overvoltage Analysis in Wind Farm,” IEEE Region 10 Annual Inter- national Conference, Nov. 2007, pp. 1-3.
[57] Olatz Ukar, Inmaculada Zamora, “Wind Farm Grounding System Design for Transient Currents,” Renewable Energy, Vol. 36, No. 7, pp. 2004-2010, July 2011.
[58] M. R. Ahmed, M. Ishii, “Electromagnetic Analysis of Interconnected Groundings at Wind Farm,” IEEJ Transactions on Power and Energy, Vol. 132, No. 7, pp. 684-689, 2012.
[59] A. M. Abd-Elhady, N. A. Sabiha, M. A. Izzularab, “Overvoltage Investigation of Wind Farm under Lightning Strokes,” IET Conference on Renewable Power Generation, Sep. 2011, pp. 1-6.
[60] N. A. Sabiha, M. Lehtonen, “Lightning-Induced Overvoltages Trans- mitted Over Distribution Transformer with MV Spark-Gap Operation - Part II: Mitigation using LV Surge Arrester,” IEEE Transactions on Power Delivery, Vol. 25, No. 4, pp. 2565-2573, Oct. 2010.
[61] D. Romero, J. Montanya, A. Cancela, “Behaviour of the Wind-Turbines Under Lightning Strikes Including Nonlinear Grounding System,” International Conference on Renewable Energy and Power Quality (ICREPQ’ 04), Apr. 2004.
[62] Damir Cavka, Dragan Poljak, Vicko Doric, Ranko Goic, “Transient Analysis of Grounding Systems for Wind Turbines,” Renewable Energy, Vol. 43, pp. 284-291, July 2012.

QR CODE