簡易檢索 / 詳目顯示

研究生: 王威愷
Wei-Kai Wang
論文名稱: 低電流漣波之LLC電能轉換器
LLC Resonant Converters with Current Ripple Reduction
指導教授: 呂錦山
Ching-Shan Leu
口試委員: 楊宗銘
Chung-Ming Young
林瑞禮
Ray-Lee Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 83
中文關鍵詞: 降低電流漣波消除電流漣波LLC諧振式轉換器台灣科技整流器台灣科技轉換器
外文關鍵詞: current ripple reduction, current ripple cancellation, LLC resonant converter, Taiwan Tech rectifier, Taiwan Tech converter
相關次數: 點閱:438下載:31
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本篇論文提出兩個電路,LLC諧振式台灣中間抽頭電路(LLC-TCT)和輸入電流漣波降低LLC諧振式台灣中間抽頭電路。提出的電路除了LLC諧振式轉換器的開關零電壓和二極體零電流的功能外,還有其他功能,例如:二次側沒有電感的架構下,二極體箝位在輸出電壓;利用二極體串聯和箝位的技術;變壓器二次側漏感的能量回收。而負載電流由輸出濾波電容和L-C-L濾波器提供,當中L-C-L濾波器的架構包含兩個二次側繞組的漏感和一個箝位電容。其結果是輸出高壓濾波電容可以降低。此外,為了降低輸入電流漣波,輸入電流漣波降低的LLC諧振式轉換器(RR-LLC-TCT)在本論文被提出,並具有低di/dt的輸入電流波形。在一般的情況下,大的di/dt雜訊產生是由於輸入電流脈衝波形導致。最常使用的解決方案是加大輸入電容,但是會使功率密度下降,所以RR-LLC-TCT的高壓輸出電容可以降低。
本論文提出的電路特性有高頻操作、高效率、高輸入電壓和高輸出電壓等,並應用在太陽能轉換器或大尺寸LCD電視背光模組。本篇論文描述高頻操作、輸入電壓300~400 V和200 V/400 W輸出規格的工作原理、理論分析和設計,並實現傳統中間抽頭(LLC-CT)、提出電路LLC-TCT和RR-LLC-TCT的電路。


Two LLC converters LLC with Taiwan Tech center-tapped rectifier (LLC-TCT) and current ripple reduction LLC-TCT are proposed in the thesis. In addition to having zero-voltage switching operation on the MOSFETs and zero-current switching on the rectifier diodes inherited from their predecessors, both converters have several additional features. For instance, the rectifier diodes are clamped to the output voltage due to the absence of filter inductor, the utilization of the clamping series-diode technique, and the recovery of the transformer secondary leakage energy. Moreover, the load current is shared by the output filter capacitor and the L-C-L filter cell constructed by the leakage inductance of the secondary windings and one clamping capacitor. As a result, the required high-voltage output filter capacitor can be reduced.
To reduce input current ripple, moreover, an input current ripple reduction LLC-TCT converter (RR-LLC-TCT) is proposed. It features low di/dt on the input current waveform. As a result, the required high-voltage input filter capacitor can be reduced.
These characteristics make it desirable for high frequency, high efficiency and high input-voltage and output-voltage power conversion applications such as solar power conversion or larger size LCD TV back light driver. In addition to the descriptions of the operation principle, theoretical analysis, and design considerations, three high frequency converters, LLC-CT, LLC-TCT, and RR-LLC-TCT, with 300-400-V input and 200-V/400-W output specification are built and tested to demonstrate their feasibility.

Abstract I Acknowledgement II Table of Contents III List of Figures V List of Tables IX Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Objectives of the Thesis 4 1.3 Organization of the Thesis 4 Chapter 2 LLC Resonant Converter with Taiwan Tech Center-Tapped Rectification 5 2.1 Introduction 5 2.2 Operation Principle 8 2.3 Theoretical Analysis 14 2.3.1 Voltage gain 14 2.3.2 Voltage stress of the semiconductor 18 2.3.3 Output current ripple reduction 19 2.4 Circuit Design 22 2.4.1 Transformer Design, T1 23 2.4.2 Design of the resonant tank, Lr, Lm and Cr 26 2.4.3 Design of the secondary clamping capacitor, Cc 26 2.4.4 Design of the output capacitor, Co 27 2.5 Experimental Results 28 2.6 Summary 34 Chapter 3 Input Current Ripple Reduction LLC Resonant Converter with Taiwan Tech Center-Tapped Rectification 36 3.1 Introduction 36 3.2 Operational Principle 38 3.3 Theoretical Analysis 43 3.3.1 Input current ripple reduction 43 3.4 Circuit Design 44 3.4.1 Design of the primary clamping capacitor, Cc1 45 3.4.2 Design of the input capacitor, C1 and C2 45 3.5 Experimental Results 45 3.6 Summary 53 Chapter 4 Conclusion and Future Research 54 4.1 Conclusion 54 4.2 Future Research 55 References 57 Appendix A 62 Appendix B 69

[1] Z. Liang, R. Guo, J. Li and A. Huang, “A high-efficiency PV module-integrated DC/DC converter for PV energy harvest in FREEDM systems,” IEEE Trans. Power Electron., vol. 26, no. 3, pp. 897-909, Mar. 16, 2011.
[2] C. H. Chang, E. C. Chang and H. L. Cheng, “A high efficiency solar array simulator implemented by an LLC resonant DC-DC converter,” IEEE Trans. Power Electron., vol. 28, no. 6, pp. 3039-3046, June 19, 2012.
[3] B. Yang, F. C. Lee, A. J. Zhang, and G. Huang, “LLC resonant converter for front end DC/DC conversion,” in Proc. IEEE Appl. Power Electron. Conf. Expo. (APEC), vol.2, Dallas, TX., Mar. 10-14, 2002, pp. 1108–1112.
[4] B. Yang, “Topology investigation for front end DC/DC power conversion for distributed power system,” Ph.D. dissertation, Virginia Polytechnic Inst. State Univ., 2003.
[5] J. H. Jung, H. S. Kim, M. H. Ryu, and J. W. Baek, “Design methodology of bidirectional CLLC resonant converter for high frequency isolation of DC distribution systems,” IEEE Trans. Power Electron., vol. 28, no. 4, pp. 1741-1755, Aug. 15, 2012.
[6] D. Y. Kim, C. E. Kim, and G. W. Moon, “High-efficiency slim adapter with low-profile transformer structure,” IEEE Trans. Ind. Electron., vol. 59, no. 9, PP. 3445-3449, Apr. 12, 2012.
[7] R. Beiranvand, B. Rashidian, M. R. Zolghadri, and S.M.H. Alavi, “A design procedure for optimizing the LLC resonant converter as a wide output range voltage source,” IEEE Trans. Power Electron., vol. 27, no. 8, pp. 2926-2934, Aug. 2012.
[8] G. Ivensky, S. Bronshtein, and A. Abramovitz, “Approximate analysis of resonant LLC DC-DC converter,” IEEE Trans. Power Electron., vol. 26, no. 11, pp. 3274-3284, Nov. 21, 2011.
[9] X. Fang, H. Hu, Z. J. Shen, and I. Batarseh, “Operation mode analysis and peak gain approximation of the LLC resonant converter,” IEEE Trans. Power Electron., vol. 27, no. 4, pp. 1985-1995, Feb. 20, 2012.
[10] R. Beiranvand, B. Rashidian, M. R. Zolghadri, and S. M. H. Alavi, “Optimizing the normalized dead-time and maximum switching frequency of a wide-adjustable-range LLC resonant converter,” IEEE Trans. Power Electron., vol. 26, no. 2, pp. 462-472, Feb. 7, 2011.
[11] W. Feng, F.C. Lee, and P. Mattavelli, “Optimal trajectory control of burst mode for LLC resonant converter,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 457-466, Sep. 11, 2013.
[12] Y. C. Chen, “Design and implementation of LLC resonant converter,” M.S. thesis, Dept. of Elect. Eng. College of Elect. Eng. and Comput. Sci., Nat. Cheng Kung Univ., Tainan, TAIWAN, 2009.
[13] Y. Liu, “High efficiency optimization of LLC resonant converter for wide load range,” M.S. thesis, Virginia Polytechnic Inst. and State Univ., 2007.
[14] J. Zhang, J. Liao, J. Wang, and Z. Qian, “A current-driving synchronous rectifier for an LLC resonant converter with voltage-doubler rectifier structure,” IEEE Trans. Power Electron., vol. 27, no. 4, pp. 1894-1904, Feb. 20, 2012.
[15] D. Fu, Ya Liu, F. C. Lee, and M. Xu, “A novel driving scheme for synchronous rectifiers in LLC resonant converters,” IEEE Trans. Power Electron., vol. 24, no. 5, pp. 1321-1329, May 2, 2009.
[16] D. Fu, “Topology investigation and system optimization of resonant converters,” Ph.D. dissertation, Virginia Polytechnic Institute and State University, 2010.
[17] L. Hang, B. Li, S. Liu, Y. Gu, W. Yao, and Z. Lu, “Asymmetrical secondary structure of LLC series resonant DC/DC converter for multi-output applications,” IET Power Electronics, vol. 4, no. 9, pp. 993-1001, Oct. 13, 2011.
[18] S. H. Cho, C. S. Kim, and S. K. Han, “High-efficiency and low-cost tightly regulated dual-output LLC resonant converter,” IEEE Trans. Ind. Electron., vol. 59, no. 7, pp. 2982-2991, Feb. 16, 2012.
[19] L. Hang, S. Wang, Y. Gu, W. Yao, and Z. Lu, “High cross-regulation multioutput LLC series resonant converter with magamp postregulator,” IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 3905-3913, Aug. 11, 2011.
[20] B. C. Hyeon and B. H. Cho, “Analysis and design of the LmC resonant converter for low output current ripple,” IEEE Trans. Ind. Electron., vol. 59, no. 7, PP. 2772-2780, Feb. 16, 2012.
[21] J. H. Jung, “Bifilar winding of a center-tapped transformer including integrated resonant inductance for LLC resonant converters,” IEEE Trans. Power Electron., vol. 58, no. 2, pp. 615-620, Feb. 2013.
[22] K. H. Yi and G. W. Moon, “Novel two-phase interleaved LLC series-resonant converter using a phase of the resonant capacitor,” IEEE Trans. Ind. Electron., vol. 56, no. 5, pp. 1815-1819, Apr. 28, 2009.
[23] C. S. Leu and M. H. Li, “A novel current-fed boost converter with ripple reduction for high-voltage conversion applications,” IEEE Trans. Ind. Electron., vol. 57, no. 6, PP. 2018-2023, May 27, 2010.
[24] M. H. Li, “High-efficiency step-Up DC/DC converter for renewable energy power applications,” M.S. thesis, Dept. Elect. Eng., Nat. TAIWAN Univ. of Sci. and Tech., Taipei, TAIWAN, 2009.
[25] C.S. Leu, “Low voltage stress power converter,” U.S. Patent 7,515,439 B2, Apr. 7, 2009.
[26] J. Hou, “Design procedure for LLC resonant converter,” M.S. thesis, Dept. Commun. and Electron. Eng. College of Elect. Eng. and Comput. Sci., Nat. TAIWAN Univ., Taipei, TAIWAN, 2009.
[27] B. H. Lee, M. Y. Kim, C. E. Kim, K. B. Park, and G. W. Moon, “Analysis of LLC resonant converter considering effects of parasitic components,” in IEEE 31st Int. Telecommun. Energy Conf. (INTELEC), Incheon, Oct. 18-22, 2009, pp. 1-6.
[28] TDK’s European Website for Electronic Components & Systems [Online]. Available: http://www.tdk.co.jp/tefe02/e141.pdf
[29] K. B. Park, B. H. Lee, G. W. Moon, and M. J. Youn, “Analysis on Center-Tap Rectifier Voltage Oscillation of LLC Resonant Converter,” IEEE Trans. Power Electron., vol. 27, no. 6, pp. 2684-2689, Mar. 19, 2012.
[30] EPARC, 電力電子學綜論, 1st ed. 台北市:全華圖書股份有限公司, 2007。
[31] 梁適安, 交換式電源供應器之理論與實務設計,1st ed. 台北市: 全華圖書股份有限公司, 2006。
[32] C. S. Leu, “Improved forward topologies for DC-DC applications with built-in input filter,” Ph.D. dissertation, Virginia Polytechnic Institute and State Univ., Dept. Elect. and Comput. Eng., Virginia, 2006.
[33] C. S. Leu and N. T. Quang, “A novel half-bridge converter with current ripple reduction,” in Energy Conversion Congr. and Expo. (ECCE), Phoenix, AZ., Sept. 17-22, 2011, pp. 3954-3959
[34] E. Herbert, “Analysis of the near zero input current ripple condition in a symmetrical push-pull power converter,” IEEE Trans. on High Frequency Power Conversion, pp. 357-371, 1989.
[35] C. S. Leu, J. B. Hwang, and F. C. Lee, “A novel forward configuration for DC-DC application: built-in input filter forward converter (BIFFC),” in IEEE Appl. Power Electron. Conf. and Expo. (APEC), vol. 1, Dallas, TX., Mar. 5-9, 1995, pp. 43-49.
[36] C. S. Leu, “A novel full-bridge configuration for high-power applications: built-in input filter full-bridge converter (BIFFBC),” in IEEE Power Electron. Specialists Conf. (PESC), vol. 1, St. Louis, MO., Jun. 22-27, 1997, pp. 763-768.
[37] M. Ye, P. Xu, B. Yang, and F. C. Lee, “Single magnetic push-pull forward converter featuring built-in input filter and coupled-inductor current doubler for 48V VRM,” in IEEE Appl. Power Electron. Conf. and Expo . (APEC), vol 2, Dallas, TX., Mar. 10-14, 2002, pp. 843-849.
[38] I. O. Lee, S. Y. Cho, and G. W. Moon, “Three-level resonant converter with double LLC resonant tanks for high-input-voltage applications,” IEEE Trans. Ind. Electron., vol. 59, no. 9, PP. 3450-3463, Apr. 12, 2012.
[39] B. R. Lin, W. R. Yang, J. J. Chen, C. L. Huang, and M. H. Yu, “Interleaved LLC series converter with output voltage doubler,” in Int. Power Electron. Confe. (IPEC), Sapporo, June 21-24, 2010, pp. 92-98.
[40] Y. Gu, L. Hang, and Z. Lu, “A flexible converter with two selectable topologies,” IEEE Trans. Ind. Electron., vol. 56, no. 12, PP. 4854-4861, July 17, 2009.

QR CODE