簡易檢索 / 詳目顯示

研究生: 秦繼孔
Chi-Kung Chin
論文名稱: 台北粉土質粘土彈粘塑性應力應變行為之研究
A study of the elasto-viscoplastic behavior of the Taipei silty clay
指導教授: 歐章煜
Chang-Yu Ou
口試委員: 楊國鑫
none
卿建業
none
葛宇甯
none
謝佑明
none
林宏達
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 258
中文關鍵詞: 黏塑性降伏面模式
外文關鍵詞: viscoplastic, yielding surface, model
相關次數: 點閱:170下載:28
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究目地在建立一個異向性、粘塑性及與速率相關之有效應力之土壤模式。該模式採用Kutter and Sathialingam之粘塑性理論及Wheeler et al.所建議降伏面方程式。本研究在參考Kutter and Sathialingam之粘塑性理論時,針對其粘塑性應變增量之求取方式,建議了量化及制式之計算方式,改進Kutter and Sathialingam之粘塑性理論p值須固定之限制。
本文中先對台北粉土質黏土力學特性做一介紹,再藉由將各種知名或較常用塑性及粘塑性模式組合律、降伏面、潛在勢能面及參數做一簡單說明,並對Wheeler et al.建議降伏面方程式與世界各地區天然土壤及台北粉土質黏土初始降伏面比對,以確認其適用性。
模式中之應變軟化定則係採用Wheeler et al.所建議的公式,但藉由參數研究,利用CK0UC,CK0UE試驗,求出適用台北粉土質黏土之基準面旋轉參數及對參數之敏感度。參數建立後,再分析CIU,CK0UC-LCR試驗並與試驗值比對,以作為模式合理性驗證的部分。
最後以此模式分析TNEC案例,並與監測值比對,以確認此模式具有依時性之能力。


The objective of this study was to derive an anisotropic viscoplastic rate dependent constitutive model. The model was derived on the basis of the viscoplastic theory proposed by Kutter and Sathialingam and the yield surface function adopted by Wheeler et al. In this paper suggests a regular method to figure the viscoplastic strain to avoid Kutter and Sathialingam theory retricting the p is constant.
In this paper, explain the mechanics characteristics of the Taipei silty clay, and introduce more famous or used most often plastic and visco-plastic soil model. The adopted yield surface function was more consistent with the yield surface of the natural clay in the world and Taipei silty clay, compared with the existing constitutive models.The model’s softening rule is derived by Wheeler et al. and the parameters are to rebuild which were studing by K0-consolidated undrained compression and extension tests.
After rebuilding parameters, the model confirmed able to simulate the undrained stress strain response for the tests aforementioned. By parameters study, check the parameters sensitive to undrained strength. The model was also used to simulate the isotropic consolidated and K0-consolidated undrained creep test. Results show that the predicted strain from the proposed model was close to the test data. Especially the model is able to predict the tertiary creep failure when the soil is subject to high stress level.
Finally, analysis the TNEC deep excavation case and was verified by the field data. To make sure the model has the time dependent ability.

中文摘要 I 英文摘要 III 誌 謝 V 目錄 V 符號索引 X 表索引 XVII 圖索引 XVIII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 研究方法及內容 3 第二章 台北粉土質黏土之力學特性 5 2.1 前言 5 2.2 異向性 5 2.3 應力應變行為 6 2.4 剪力強度 7 2.4.1 有效內摩擦角 8 2.4.2 不排水剪力強度 9 2.5 滲透特性 9 2.6 時間效應 10 2.6.1 排水潛變(二次壓密) 11 2.6.2 不排水潛變 12 2.6.3 應變速率之影響 13 2.7 土壤模式組合律 15 第三章 土壤模式介紹 17 3.1 前言 17 3.2 土壤塑性模式 18 3.2.1 莫耳-庫侖模式(Mohr-Coulomb) 20 3.2.2 修正劍橋模式(MCC) 21 3.2.3 MIT-E3模式 23 3.2.4 S-CLAY1模式 24 3.3 土壤彈粘塑性模式 29 3.3.1 Kutter and Sathialingam 模式 30 3.3.2 GANI模式 35 3.3.3 Leoni et al. 模式 39 第四章 率相關彈塑性模式之發展及建置 43 4.1 土壤降伏面研究 43 4.2 塑流定則研究 44 4.3 粘塑性應變增量推導 45 4.4 參數研究 48 4.4.1 基準面旋轉參數之研究 48 4.4.2 Cα參數與應變速率及不排水剪力強度關係之研究 50 4.5 模式合理性驗證 50 第五章 TNEC深開挖工程案例分析 57 5.1 前言 57 5.2 工程概況 57 5.3 工址地質概況 57 5.4 材料分析模式及參數 58 5.5 結構材料參數 59 5.6 分析結果驗證 60 第六章 結論與建議 61 6.1 結論 61 6.2 建議 62 參考文獻 63 作者簡介 141 附錄 A 分析TNEC案例(方法一) 143 附錄 B 分析TNEC案例(方法二) 173 附錄 C 分析TNEC案例(方法三) 204 授權書 235

1. Roscoe, K. H. and Burland, J. B. 1968., On the generalized stress-strain behavior of ‘wet’ clay, in Engineering Plasticity, J. Heyman and F. A. Leckie(Eds.), Cambridge University Press , Cambridge , pp. 535-609.
2. Zdravkovic, L. , Potts, D. M. and Hight, D. W. 2002. ,The
strength anisotropy on the behaviour of embankments
ground, Geotechnique, 52, pp. 447-457.
3. Whittle, A. J. and Kavvadas, M. J. 1994. ,Formulation of the MIT-E3 constitutive model for overconsolidated clay, Journal of Geotechnical Engineering, ASCE, Vol. 120, No.1, pp. 173-198.
4. Pestana, J. M. ,Whittle, A. J. 1999. ,Formulation of a unified constitutive model for clays and sands, International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 23, pp. 1215-1243.
5. Ling H. I. , Yue, D. J. , and Themelis, N. J. 2002. ,An anisotropic elasto-plastic bounding surface model for cohesive soils, Journal of Engineering Mechanics ,ASCE, 128(7), pp. 748-758.
6. Wheeler, S. J. , Näätänen, A. , Karstunen, M. , and Lojander, M. 2003. ,An anisotropic elasto-plastic model for natural clays, Canadian Geotechnical Journal 40(2), pp. 403 – 418.
7. Singh, A. and Mitchell, J. K. 1968. ,General
stress-strain-time function for soils, Journal of Soil Mechanics and Foundation Division, ASCE, Vol. 94, No. SM1, pp. 21-46.
8. Semple, R. M. 1973. ,The effect of time-dependent properties of
altered rock on the tunnel support requirement, Ph. D. Dissertation,
University of Illinois.
9. Mesri, G. , Febres-Covdero, E. ,Shields, D. R. , and Castro, A.
1981. ,Shear stress-strain-time behavior of clays, Geotechnique,Vol.
31, No. 4, pp. 537-552.
10. Perzyna, P. 1963. ,The constitutive equations for rate sensitive
plastic materials, Quarterly of Applied Mathematics, Vol. 20, pp.
321-332.
11. Kutter, B. L. and Sathialingam, N. 1992. ,Elastic-viscopla
modeling of the rate-dependent behavior of clays,
Geotechnique, Vol. 42, No. 3, pp. 427-441.
12. Kelln, C. , Sharma, J. , Hughes, D. and Graham, J. 2008. ,An
improved elastic-viscoplastic soil model, Canadian Geotechnical
Journal 45, pp. 1356 – 1376.
13. Karim, M. R., Gnanendran, C. T. , Lo, S.-C.R. and Mak, J.
2010. ,Predicting the long-term performance of a wide
embankment on soft soil using an elastic-viscoplastic model,
Canadian Geotechnical Journal 47, pp.244 – 257.
14. Hinchberger, Sean D. and Qu, Guangfeng , 2009. ,An improved
elastic-viscoplastic soil model, Canadian Geotechnical Journal 46,
pp. 609 – 626.
15. Diaz-Rodriguez, J. A. ,Leroueil, S. and Aleman, J. D. 1992. , Yielding of Mexico city clay and other natural clays, Journal of Geotechnical Engineering, ASCE, Vol. 118, No. 7, pp. 981-995.
16. Chin C. T. , Crooks , J. H. A. and Moh Z. C.
1994. ,Geotechnical properties of the cohesive Sungshan Deposits Taipei , Geotechnical Engineering, Journal of Southeast Asian Geotechnical Society, Vol. 25, No. 2, pp. 77-103.
17. Chen Z. N. 1997. , Yielding behavior of Taipei silty clay, Master Dissertation, National Taiwan University of Science and Technology.
18. Yue, D. J. , Ling H. I. , Kaliakin, V. N. , and Themelis, N. J.
2003. ,Formulation and calibration of an anisotropic bounding
surface model for clay, in Constitutive Modeling of Geomaterials:
Selected Contributions from Frank L. DiMaggio Symposium,
Ling H. I. , Anandarajah, A. , Manzari, M. T. , Kaliakin, V. N. and
Smyth , A. , editors, CRC Press, pp. 137-144.
19. Ou C. Y. , Liu C. C. and Chin C. K. 2009. , Development of rate dependent stress-strain simulation of clay, Journal of Mechanics, Vol. 25, No. 1.
20. Ou C. Y. , Liu C. C. and Chin C. K. accepted on April 29 2010. , Anisotropic viscoplastic modeling of rate dependent behavior of clay, International Journal for Numerical and Analytical Methods in Geomechanics.
21. Zhou Cheng, Yin J. H. , Zhu J. G. and Cheng C. M., 2005. , Elastic anisotropic viscoplastic modeling of the strain-rate-dependent stress-strain behavior of K0-consolidated natural marine clays in triaxial shear tests, International Journal of Geomechanics, ASCE, Vol. 5, No. 3.
22. Leoni, M. , Karstunen, M. and Vermeer, P. A. 2008. ,Anisotropic creep model for soft soils, Geotechnique, 58, No. 3, pp. 215-226.
23.Yin Z. Y. , Chang C. S. , Karstunen, Minna, and Hicher, Pierre-Yves 2010. ,An anisotropic elastic-viscoplastic model for soft clays, International Journal of Solids and Structure, 47, pp. 665-667.
24. Huang, C.T., Kao, T.C., Lin Y.K., and Moh, Z.C. 1987. Geotechnical engineering mapping of the Taipei city. Proc., 9th Southeast Asian Geotech. Conf., Bangkok, 3-109~3-120.
25. MAA 1987. Engineering properties of the soil deposits in the Taipei Basin. Report No. 85043, Ret-Ser Engineering Agency and Taipei Public Works Department, Taipei. (in Chinese)
26. Chung-Tien Chin, Jie-Ru Chen, I-Chou 2006, Engineering characteristics of Taipei Clay, MAA Group Consulting Engineers, Taipei, Taiwan, R.O.C.
27.洪如江,1966,台北盆地各地土壤之物理性質, 國立台灣大學工程學刊, 第十期, pp.194-217.
28. Casagrande and Carrillo, N.,1944, Shear failure of anisotropic materials, Proceedings Boston Society of Civil Engineering, vol. 31, pp.74-87.
29. Teng, F. C. 2010. Personal file.
30. Liu C. C. 1999. ,A generalized effective stress constitutive model for Taipei clay, Ph. D. Dissertation, National Taiwan University of Science and Technology.
31. Chin C. T. and Liu C. C. 1997. , Volumetric and undrained behaviors of Taipei silty clay, Journal of the Chinese Institute of Civil and Hydraulic Engineering, Vol. 9, No. 4, pp. 665-678.
32. Liu C. C. , Chin C. T. and Hsieh H. S. 1991. , Effect of anisotropic consolidation and principal stress rotation on the undrained shear strength of the Taipei Sungshan clay, Journal of the Chinese Civil and Hydraulic Engineering, Journal of the Chinese Institute of Civil and Hydraulic Engineering, Vol. 3, No. 1, pp. 83-88.
33. 歐章煜及蕭文達, 1994, 台北粉土質粘土之不排水勁度特性, 中國土木水利工程學刊,第六卷,第二期, pp.233-237.
34. Chin C. T. , Crooks,J.H.A.,and Moh,Z.C., 1994. , Geotechnical properties of the cohesive Sungshan Deposits,Taipei, Geotechnical Engineering, Journal of Southeast Asian Geotechnical society, Vol. 25, No. 2, pp. 77-103.
35. Tavenasetal,F.,Jean,P.,Leblond,P., and Leroueil,S., 1983, The permeability of natural soft clays,Ⅱ:Permeability characteristics, Canadian Geotechnical Journal, Vol. 19, No. 3, pp167-185.
36. Terzaghi, K., 1943, Theoretical soil mechanics , John Wiley and Sons, N.Y.
37. Biot, M.A., 1941, General theory of three-dimensional consolidation, Journal of Applied Physics, Vol. 12, pp.155-164.
38.劉泉枝, 單向度壓密試驗結果之評估結果及應用, 1991, 地工技術,第36期, pp.62-74.
39. Ladd, C.C., and Preston, W.B.,On the secondary compression of saturated clays, Research in earth Physics, Phase report No. 6, Massachusetts Institute of Technology.
40. Mesri, G. , and Godlewski, P.M., 1977, Time and stress-compressibility interrelationship, Journal of the Geotechnical Engineering Division , ASCE, Vol. 103, No. GT5, pp. 417-430.
41. Mesri, G. , and Castro, A., 1987, Cα/Cc concept and K0 during secondary compression , Journal of the Geotechnical Engineering, ASCE, Vol. 113, No. 3, pp.230-247.
42. Mesri, G. , Lo, D.O.K., and Feng, T.W., 1994, Settlement of embankments on soft clays, Vertical and Horizontal Deformations of Foundations and Embankments, Geotechnical Special Publication, No. 40, Vol. 1, ASCE, pp. 8-56.
43.亞新顧問公司, 1987, 台北市地層大地工程分析報告, 編號473-3.
44. Bjerrum, L., 1967, Engineering geology of Norwegian normally consolidated marine clays as related to settlements of buildings, Geotechnique, Vol. 17, No. 2, pp. 81-118.
45.王建智, 1997, 深開挖引致之軟弱粘土不排水潛變行為之研究,國立台灣科技大學營建工程系博士論文.
46.Leroueil, S. ,1996, Compressibility of clays : Fundamental and practical aspects, Journal of the Geotechnical Engineering, ASCE, Vol. 122, No. 7, pp. 534-543.
47.Ladd, C.C., 1964, Stress-strain modulus of clay in undrained shear, Journal of Soil Mechanics and Foundation Division, Vol. 90, No. SM5, pp. 103-132.
48. Bjerrum, L., 1971, Recent research on the consolidation and shear behavior of normally consolidated clay, Norwegian Geotechnical Institute, Internal, No. 50302, Oslo.
49.Germaine, J.T., and Ladd, C.C., 1988, Triaxial testing of saturated cohesive soils, State-of-the-Art paper, Advanced triaxial testing of soil and rock, ASTM STP 977, Philadelphia, pp. 421-459.
50. Sheahan, T.C., Ladd, T.C., and Germaine, J.T., 1996, Rate-dependent undrained shear behavior of saturated clay, Journal of the Geotechnical Engineering, ASCE, Vol. 122, No. 2, pp. 99-108.
51.Nakase, A., and Kamei, T., 1986, Influenceof strain rate on undrained shear characteristics of K0-consolidated cohesive soils, Soils and Foundations, Vol. 26, No. 1, pp. 85-95.
52.張聰耀, 1996, 台北沉泥質粘土之變形特性研究, 國立台灣工業技術學院營建工程系碩士論文.
53.蔡宗良, 1997, 粘土潛變及剪力強度試驗之應力、應變、應變速率之相關性探討, 國立台灣工業技術學院營建工程系碩士論文.
54. Näätänen, A., Wheeler, S.J., Karstunen, M. & Lojander, M., 1999. Experimental investigation of an anisotropic hardening model for soft clays. In M.Jamiolkowski, R. Lancellotta & D. Lo Presti (ed.),
Proc. 2nd Int. Symp. on Pre-failure Deformation Characteristics of Geomaterials, Torino, Vol. 1:541-548. A.A. Balkema.
55. Wheeler, S.J., Karstunen, M. and Näätänen, A., 1999. An anisotropic hardening model for normally consolidated soft clays. Numerical Models in Geomechanics-NUMOG Ⅷ, Pande, Pietruszczak. and Schweiger (eds.). Balkema, Rotterdam, pp. 33-38.
56. Zentar, R. , Karstunen, M. ,Wiltafsky, C. ,Schweiger, H. F. and Koskinen, M. 2002b. ,Comparison of two approaches for modelling anisotropic of soft clays, In Proceedings of the 8th international Symposium on Numerical Models in Geomechanics (NUMOG Ⅷ), Rome. 10-12 April, Edited by G. N. Pande and S. Pietruszczak. A. A. Balkema, Rotterdam, pp. 115-121.
57. Borja, R.I. and Kavazanjian, E., 1985, Jr., A Constitutive Model for the Stress-strain-time Behavior of ‘Wet’ Clays, Geotechnique , Vol. 35, No. 3, pp. 283~298.
58. Hsieh, H.S., Kavazanjian, E., and Borja, R.I., 1990, Double-Yield-Surface Cam Clay Plasticity Model. I: Theory, Journal of Geotechnical Engineering, ASCE, Vol. 116, No. 9, pp. 1381~1401.
59. Desai, C.S., and Zhang, D., 1987, Viscoplastic Model for Geologic Materials with Generalized Flow Rule, International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 11, pp. 603~620.
60.Dafalias, Y. F. and Herrmann, L. R. 1982. ,A bounding surface formulation of soil plasticity, Soil Mechanics Transient and Cyclic Loads, Edits by Pande and Zienkiewicz, London Wiley, pp. 253-282.
61.Tavenas, F. , Leroueil, S. , Rochelle, L. and Roy, M. 1978. ,Creep behavior of an undisturbed lightly overconsolidated clay, Canadian Geotechnical Journal, Vol. 15, pp. 402-423.
62.Wood, D. M. 1979. ,True triaxial tests on Boston blue clay, Proceedings of 10th International Conference on Numerical Methods in Geomechanics, Aachen, Vol. 3, pp. 435-439.
63. Anandarajah, A., Kuganenthira, N. and Zhao, D. 1996. ,variation of fabric anisotropy of kaolinite in triaxial loading, Journal Geotech. Engng 122, No. 8, pp. 663-640.
64.Graham, J. and Houlsby, G. T. 1983. ,Anisotropic elasticity of a natural clay, Geotechnique, 33, pp. 165-180.
65.Graham, J. , Noonan, M. L. and Lew, K. V. 1983. ,Yield states and stress-strain relations in nature plastic clay, Canadian Geotecnical Journal, 20, pp. 502-516.
66.Korhonen, K. H., and Lojander, M. 1987. ,Yielding of Perno clay , In Proceedings of the 2nd International Conference on Constitutive Laws for Engineering Materials, Tucson, Ariz. Elsevier, N. Y. Vol. 2, pp. 1249-1255.
67. ITASCA Consulting Group, Inc. 2001. ,FLAC: Fast Lagrangian Analysis of Continua, User’s Manual, Version 4.0.
68. Finno, R. J. and Chung, C. K. , 1992. , Stress-strain-strength responses of compressible Chicago glacial clays, Journal of Geotechnical Engineering, ASCE, Vol. 118, No. 10, pp. 1607-1625.
69. Lin H. D. and Pai C. C. 1995. , Undrained creep characteristics of Taipei silty clays, Journal of the Chinese Institute of Civil and Hydraulic Engineering, Vol. 7, No. 1, pp. 35-44.
70. Pai C. C. 1992. , Stress-strain-time behavior of Taipei silty clays, Master Dissertation, National Taiwan University of Science and Technology.
71. Tsai Z. L. , 1997. , An investigation of the creep and the
stress-strain-strain rate of clay under the undrained condition, Master Thesis, National Taiwan Institute of Technology.
72.林亦朗, 2010, 地中璧對粘土層開挖變形影響之研究,國立台灣科技大學營建工程系博士論文.
73. Janbu, N., 1963 ,"Soil compressibility as determined by oedometer and triaxial tests," European Conference and Foundation Engineering, Wiesbaden, Germany, Vol. 1, pp. 19~25.
74.Ou, C.Y. and Lai, C. H. 1994. ‘Finite-element analysis of deep excavation in layered sandy and clayey soil deposits’ Canadian Geotecnical Journal, 31,N0. 2, pp. 204-214.
74.林玉英、楊秦、張敏儀、鐘滿祥, 1970, ’台北盆地上層土壤(松山層剪力波速初期測定結果及其在結構耐振設計上之意義之初步研究)’中央研究院地球物理科學研究所籌備處研究報告,台北
75.ACI committee 318, 1995, ‘Building Code Requirements for Structural Concrete’ (ACI-318-95)and Commentary (ACI 318R-95)
76.Ou, C.Y., 2006, ‘Deep excavation :theory and practice’ Taylor and Francis, The Netrerlands.

QR CODE