簡易檢索 / 詳目顯示

研究生: 楊沛中
Pei-Chung Yang
論文名稱: 雙面太陽能光電熱能複合系統之最佳化參數設計與實務驗證
Optimal Parameter Design and Practical Validation of Bifacial Photovoltaic Thermal Energy Composite System
指導教授: 郭中豐
Chung-Feng Jeffrey Kuo
口試委員: 黃昌群
Chang-Chiun Huang
張嘉德
Chia-Der Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 166
中文關鍵詞: 變異數分析主成份分析本質轉換選擇消去法暫態系統模擬軟體田口方法垂直架設太陽能光電熱能複合系統
外文關鍵詞: Bifacial, ELECTRE
相關次數: 點閱:250下載:38
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究探討影響雙面太陽能光電熱能複合系統(Bifacial Photovoltaic and Thermal Composite Module, BPV/T)之最重要設置參數(含集熱器材質、集熱管數目、集熱管直徑、儲水桶容積/集熱板面積(Volume to Area,V/A)比、質量流率、循環溫度及系統方位角)對發電效率與儲熱效率之關係。
首先應用田口方法(Taguchi Method)進行實驗規劃,因應太陽運行軌跡與仰角位置,分別對每季做最佳化設置參數設計。首先利用測試軟體TRNSYS進行模擬並搭配主效果分析(Main Effect Analysis, MEA)與變異數分析(Analysis of Variance, ANOVA),分別檢視各項設置參數對各單品質(發電效率與儲熱效率)之影響程度,並求得各單品質最佳化設置參數組合。為考量發電效率與儲熱效率兩品質最佳化,運用多品質理論之主成份分析法(Principal Component Analysis, PCA)計算各品質特性之客觀權重值,結合本質轉換選擇消去法(Elimination Et Choice Translating Reality, ELECTRE)求出多品質最佳化設置參數組合,依據多品質最佳化設置參數組合進行實務驗證。
研究顯示,單品質與多品質最佳化設置參數組合,模擬測試均位於95%信賴區間內,實務驗證與模擬測試之發電效率與儲熱效率之最大誤差皆小於4.3%,模擬測試具有可靠度。
本研究評估設置容量1 kW之BPV/T、單面太陽能光電熱能複合系統(PV/T)及太陽能光電系統(PV)效益及佔地面積分析。BPV/T與PV/T系統比較:年發電量高13.7%、儲熱量高4.8%且回收年限少0.2年;與PV系統相較:年發電量高19.25%、年總產生能量多389%且回收年限少4.8年。以光電模組保固20年為基準,扣除建置成本經濟效益比較:BPV/T較PV/T系統多18%,較PV系統多460%;另佔地面積比較:BPV/T較PV與PV/T系統少11%,且單位面積總產生能量:BPV/T較PV/T系統高20%、較PV系統高210%。


This study discusses the relationship of the most important setup parameters (including collector material, number of heat collecting pipes, diameter of heat collecting pipe, Volume to Area(V/A) ratio, mass flow rate, cycle temperature and azimuth) influencing Bifacial Photovoltaic and Thermal Composite Module(BPV/T) to the electrical efficiency and heat storage efficiency.
First, the experiment is designed by Taguchi method. Optimized setup parameter combinations design is made for each quarter according to the track and elevation angle of sun. The testing software TRaNsient System Simulation(TRNSYS) is used for simulation and combined with Main Effect Analysis(MEA) and Analysis of Variance(ANOVA) to review the effect of various setup parameters on each single quality characteristic (electrical efficiency and heat storage efficiency), and to obtain various single quality characteristic optimized setup parameter combinations. Considering electrical efficiency and heat storage efficiency multiple quality characteristics optimization, the Principal Component Analysis(PCA) of multiple quality characteristics theory is used to calculate the objective weights of each properties, combined with Elimination Et Choice Translating Reality(ELECTRE) to work out the multiple quality characteristics optimized setup parameter combinations, practical validation is implemented according to multiple quality characteristics optimized setup parameter combinations.
It is observed that single quality characteristic and multiple quality characteristics optimized setup parameter combinations of simulation test are in the 95% confidence interval, the maximum error of electrical efficiency and heat storage efficiency and of practical validation and simulation test is less than 4.3%, simulation test has reliability.
This study analyzes the BPV/T, Photovoltaic(PV) and Photovoltaic and Thermal(PV/T) benefit and floor area of installed capacity 1 kW. Compared with PV/T, BPV/T has 13.7% higher annual power generation, 4.8% higher thermal storage capacity and 0.2 year shorter cost recovered years; compared with PV, annual power generation is higher by 19.25%, annual overall energy output is higher by 389% and cost recovered years is shorter by 4.8 years. Based on 20-year warranty of photovoltaic module, in terms of economic benefit deducting construction cost: BPV/T is higher than PV/T by 18%, higher than PV by 460%; comparison of floor area: BPV/T is less than PV and PV/T by 11%, and overall energy output per unit area: BPV/T is higher than PV/T by 20%, higher than PV by 210%.

摘要 I ABSTRACT III 致謝 V 目錄 VI 圖目錄 IX 表目錄 XI 第1章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 3 1.2.1 雙面太陽能光電模組 3 1.2.2 太陽能光電熱能複合系統 6 1.2.3 最佳化參數理論 9 1.3 研究規劃與目的 11 1.4 論文架構及研究流程圖 12 第2章 太陽能光電熱能複合系統設置介紹 15 2.1 太陽能設置環境評估 15 2.1.1 經緯度座標系統與天赤道座標系統 15 2.1.2 太陽角度計算 17 2.1.3 日射量計算 18 2.1.4 陰影距離計算 21 2.2 雙面太陽能光電熱能複合模組介紹 23 2.2.1 太陽能光電熱能複合模組介紹 23 2.2.2 太陽能光電熱能複合系統性能介紹 27 2.3 TRNSYS軟體介紹 28 第3章 品質分析與最佳化理論 31 3.1 田口方法 31 3.1.1 實驗設計因子 32 3.1.2 直交表 33 3.1.3 訊號雜訊比 35 3.2 主效果分析 36 3.3 變異數分析法 38 3.4 確認實驗 41 3.5 主成份分析法 42 3.5.1 PCA計算步驟 43 3.6 本質轉換選擇消去法 46 3.6.1 ELECTRE計算步驟 47 3.7 最佳化分析流程 53 第4章 實驗規劃步驟 54 4.1 實驗規劃 54 4.2 雙面太陽能光電熱能複合系統 58 4.3 實驗流程圖 60 第5章 實驗結果 61 5.1 單品質參數最佳化分析 61 5.1.1 12至2月實驗單品質最佳化分析結果 62 5.1.2 3至5月實驗單品質最佳化分析結果 68 5.1.3 6至8月實驗單品質最佳化分析結果 75 5.1.4 9至11月實驗單品質最佳化分析結果 81 5.2 多品質參數最佳化分析 88 5.2.1 12至2月實驗多品質最佳化分析結果 88 5.2.2 3至5月實驗多品質最佳化分析結果 99 5.2.3 6至8月實驗多品質最佳化分析結果 111 5.2.4 9至11月實驗多品質最佳化分析結果 122 5.3 效益分析 134 5.3.1 回收效益分析 134 5.3.2 佔地面積分析 137 第6章 結論 140 參考文獻 142

[1]經濟部能源局,「能源統計手冊」,經濟部能源局,中華民國,2015。
[2]經濟部能源局,「2014年能源產業技術白皮書」,經濟部能源局,中華民國,2014。
[3]S Esterly, “2013 Renewable energy data book-NREL.” National Renewable Energy Laboratory (NREL), Golden, Colorado, 2014.
[4]International Energy Agency, “Medium-term oil market report 2014.” International Energy Agency (IEA) Publications, Paris, France 2014.
[5]電子工程專題,「替代能源發燒-太陽能、風力、生質能最具潛力」,電子工程專題,中華民國,2007。
[6]BP Global, “BP statistical review of world energy 2015.” Pureprint Group Limited, London, UK, 2015.
[7]H. Mori, “Radiation energy transducing device.” U.S. Patent 3.278.811, 1966.
[8]I. Chambouleyron and Y. Chevalier, “Silicon double solar cell.” Proceedings 1st European Conference on Photovoltaic Solar Energy, Luxembourg, Luxembourg, pp. 967-976, September 27-30 1977.
[9]A. Luque, J.M. Ruiz, A. Cuevas, J. Eguren and J.M. Gomez-Agost, “Double-sided solar cells to improve static concentration.” Proceedings 1st European Conference on Photovoltaic Solar Energy, Luxembourg, Luxembourg, pp. 269-277, September 27-30 1977.
[10]T. Waraisako, K, Matsukuma, S. Kokunai, Y. Kida, T. Uematsu and H. Yagi, “Bifacial multicrystalline silicon solar cells.” Proceedings of the 23rd IEEE Photovoltaic Specialists Conference, Louisville, KY, U.S., pp. 248-251, May 10-14 1993.
[11]T. Joge, I. Araki, K. Takaku, H. Nakahara, Y. Eguchi and T. Tomita, “Advanced applications of bifacial solar modulus.” Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan, Vol. 3, pp. 2451-2454, May 18-18 2003.
[12]T. Nordmann and L. Clavadetscher, “PV on noise barriers.” Progress in Photovoltaics: Research and Applications, Vol. 12, No. 6, pp. 485-495, 2004.
[13]T. Joge, Y. Eguchi, Y. Imazu, I.Araki, T. Uematsu and K. Matsukuma, “Basic application technologies of bifacial photovoltaic solar modules.” Electrical Engineering in Japan, Vol. 149, No. 3, pp. 32- 42, 2004.
[14]A. Cuevas, “The early history of bifacial solar cells.” Proceedings of the 20th European Photovoltaic Solar Energy Conference (EUPVSEC), Barcelona, Spain, pp. 801-805, June 6-10 2005.
[15]I. Araki, M. Tatsunokuchi, H. Nakahara and T. Tomita, “Bifacial PV system in aichi airport-site demonstrative research plant for new energy power generation.” Solar Energy Materials and Solar Cells, Vol. 93, No. 6, pp. 911-916, 2009.
[16]P. Ooshaksaraei, R. Zulkifli, S. H. Zaidi, S. A. Alghoul, A. Zaharim and K. Sopian, “Terrestrial applications of bifacial photovoltaic solar panels.” In Proceedings of the 10th WSEAS International Conference on System Science and Simulation in Engineering, Penang, Malaysia, pp. 128-131, October 3-5 2011.
[17]J. Johnson, W. Hurayb and Y. Baghzouz. “Economic evaluation of energy produced by a bifacial photovoltaic array in the era of time-of-use pricing.” Clean Electrical Power (ICCEP), International Conference on. IEEE, Alghero, Italy, pp. 348-352, June 11-13, 2013.
[18]S. Guo, T. M. Walsh and M. Peters, “Vertically mounted bifacial photovoltaic modules: a global analysis.” Energy, Vol. 61, pp. 447-454, 2013.
[19]C. Pisigan and F. Jiang, “Performance of bi-facial PV modules in urban settlements in tropical regions.” Advanced Materials Research, Vol. 853, pp. 312-316, 2014.
[20]B. J. Huang, T. H. Lin, W. C. Hung and F. S. Sun, “Performance evaluation of solar photovoltaic/thermal systems.” Solar Energy, Vol. 70, No. 5, pp. 443-448, 2001.
[21]J. J Lu, J. P Chow, T. T. W. He and G. Pei, “A sensitivity study of a hybrid photovoltaic/thermal water-heating system with natural circulation.” Applied Energy, Vol 84, No. 2, pp. 222-237, 2007.
[22]B. Robles-Ocampo, E. Ruiz-Vasquez, H. Canseco-Sanchez, R. C. Cornejo-Meza, G. Trápaga-Martínez, F. J. García-Rodriguez, J. González-Hernández and Y. V. Vorobiev, “Photovoltaic/thermal solar hybrid system with bifacial PV module and transparent plane collector.” Solar Energy Materials and Solar Cells, Vol. 91, No. 20, pp. 1966-1971, 2007.
[23]W. He, Y. Zhang and J. Ji, “Comparative experiment study on photovoltaic and thermal solar system under natural circulation of water.” Applied Thermal Engineering, Vol. 31, No. 16, pp. 3369-3376, 2011.
[24]O. Zogou and H. Stapountzis, “Experimental validation of an improved concept of building integrated photovoltaic panels.” Renewable Energy, Vol. 36, No. 12, pp. 3488-3498, 2011.
[25]N. Aste, C. D. Pero and F. Leonforte, “Thermal-electrical optimization of the configuration a liquid PVT collector.” Energy Procedia, Vol. 30, pp. 1-7, 2012.
[26]C. Rossi, L. A. Tagliafico, F. Scarpa and V. Bianco, “Experimental and numerical results from hybrid retrofitted photovoltaic panels.” Energy Conversion and Management, Vol. 76, pp. 634-644, 2013.
[27]S. Dubey and A. A. Tay, “Testing of two different types of photovoltaic–thermal (PVT) modules with heat flow pattern under tropical climatic conditions.” Energy for Sustainable Development, Vol. 17, No. 1, pp. 1-12, 2013.
[28]F. Shan, L. Cao and G. Fang, “Dynamic performances modeling of a photovoltaic–thermal collector with water heating in buildings.” Energy and Buildings, Vol. 66, pp. 485-494, 2013.
[29]P. Xu, X. Zhang, J. Shen, X. Zhao, W. He and D. Li, “Parallel experimental study of a novel super-thin thermal absorber based photovoltaic/thermal (PV/T) system against conventional photovoltaic (PV) system.” Energy Reports, Vol. 1, pp. 30-35, 2015.
[30]B. Zhang, J. Lv, H. Yang, T. Li, S. Ren, “Performance analysis of a heat pipe PV/T system with different circulation tank capacities.” Applied Thermal Engineering, Vol. 87, pp. 89-97, 2015.
[31]T. C. Wang and H. D. Lee, “Developing a fuzzy TOPSIS approach based on subjective weights and objective weights.” Expert Systems with Applications, Vol. 36, No.5, pp. 8980-8985, 2009.
[32]C. F. J. Kuo, T. L. Su, P. R. Jhang, C. Y. Huang and C.H. Chiu, “Using the Taguchi method and grey relational analysis to optimize the flat-plate collector process with multiple quality characteristics in solar energy collector manufacturing.” Energy, Vol. 36, No. 5, pp. 3554-3562, 2011.
[33]A. H. Marbini and M. Tavana, “An extension of the ELECTRE I method for group decision-making under a fuzzy environment.” Omega, vol. 39, No. 4, pp. 373–386, 2011.
[34]R. Sreenivasulu, “Optimization of surface roughness and delamination damage of GFRP composite material in end milling using Taguchi design method and artificial neural network.” Procedia Engineering, Vol. 64, pp. 785-794, 2013.
[35]L. Botti and N. Peypoch, “Multi-criteria ELECTRE method and destination competitiveness.” Tourism Management Perspectives, Vol. 6, pp. 108-113, 2013.
[36]J. Dong, T. T. Feng, Y. I. Yang and Y. Ma, “Macro-site selection of wind-solar hybrid power station based on ELECTRE-II.” Renewable and Sustainable Energy Reviews, Vol. 35, pp. 194-204, 2014.
[37]C. F. J. Kuo, W. L. Lan, Y. C. Chang and K. W. Lin, “The preparation of organic light-emitting diode encapsulation barrier layer by low-temperature plasma-enhanced chemical vapor deposition: a study on the SiOxNy film parameter optimization.” Journal of Intelligent Manufacturing, pp. 1-13, 2014. (DOI 10.1007/s10845-014- 0893-8)
[38]T. L. Ooi, B. Wu and Z. J. He, “Distance determined by the angular declination below the horizon.” Nature, Vol. 414, No. 6860, pp. 197-200, 2001.
[39]賴鵬程,「太陽能系統分析與設計-配管、泵及送風機之基本應用」,全華科技圖書有限公司,臺灣台北,1982。
[40]氣象局,http://www.cwb.gov.tw/V7/astronomy/cdata/season.htm,交通部中央氣象局,2015。
[41]C. Riordan and R. Hulstrom, “What is an air mass 1.5 spectrum?” Conference Record of the IEEE Photovoltaic Specialists Conference, Kissimmee, FL, U.S., pp. 1085-1088, May 21-25 1990.
[42]E. Roumpakias, O. Zogou and A. Stamatelos, “Correlation of actual efficiency of photovoltaic panels with air mass.” Renewable Energy, Vol. 74, pp. 70-77, 2015.
[43]R. A. Messenger and J. Ventre, “Photovoltaic systems engineering, third edition.” CRC Press, Boca Raton, FL, U.S., 2010.
[44]任新兵,「太陽能光伏發電工程技術」,化學工業出板社,中國北京,2011。
[45]Q. Tai, B. Chen, F. Guo, S. Xu, H. Hu, B. Sebo and X. Z. Zhao, “In situ prepared transparent polyaniline electrode and its application in bifacial dye-sensitized solar cells.” American Chemical Society Nano, Vol. 5, No. 5, pp. 3795-3799, 2011.
[46]M. C. Browne, B. Norton and S. J. McCormack, “Phase change materials for photovoltaic thermal management.” Renewable and Sustainable Energy Reviews, Vol. 47, pp. 762-782, 2015.
[47]H. H. Lee, “Taguchi methods: principles and practices of quality design.” Gau Lih Book Co, Taipei, Taiwan, 2011.
[48]B. M. Gopalsamy, B. Mondal and S. Ghosh, “Taguchi method and ANOVA: an approach for process parameters optimization of hard machining while machining hardened steel.” Journal of Scientific and Industrial Research, Vol. 68, No. 8, pp. 686-695, 2009.
[49]A. Bhattacharya, S. Das, P. Majumder and A. Batish, “Estimating the effect of cutting parameters on surface finish and power consumption during high speed machining of AISI 1045 steel using Taguchi design and ANOVA.” Production Engineering, Vol. 3, No. 3, pp. 31-40, 2009.
[50]M. Altan, “Reducing shrinkage in injection moldings via the Taguchi, ANOVA and neural network methods.” Materials and Design, Vol. 31, No. 1, pp. 599-604, 2010.
[51]S. H. Park and J. Antony, “Robust design for quality engineering and six sigma.” World Scientific, New York, NY, U.S., 2008.
[52]S. Wold, K. Esbensen and P. Geladi, “Principal component analysis.” Chemometrics and Intelligent Laboratory Systems, Vol. 2, No. 2, pp. 37-52, 1987.
[53]H. Abdi and L. J. Williams, “Principal component analysis.” Wiley Interdisciplinary Reviews: Computational Statistics, Vol. 2, No. 4, pp. 433-459, 2010.
[54]B. Roy, “The outranking approach and the foundations of ELECTRE methods.” Theory and Decision, Vol. 31, No. 1, pp. 49-73, 1991.
[55]S. Corrente, S. Greco and R. Słowiński, “Multiple criteria hierarchy process with ELECTRE and PROMETHEE.” Omega, Vol. 41, No. 5, pp. 820-846, 2013.
[56]M. G. Rogers, B. Michael and L. Y. Maystre, “ELECTRE and decision support: methods and applications in engineering and infrastructure investment.” Springer Science and Business Media, 2013.
[57]Y. Tiana and C.Y. Zhaob, “A review of solar collectors and thermal energy storage in solar thermal applications.” Applied Energy, Vol. 104, pp 538-553, 2013.
[58]S. Suman, M. K. Khan and M. Pathak, “Performance enhancement of solar collectors—a review.” Renewable and Sustainable Energy Reviews, Vol. 49, pp. 192-210, 2015.
[59]S. K. Verma and A. K. Tiwari, “Progress of nanofluid application in solar collectors: a review.” Energy Conversion and Management, Vol.100, pp. 324-346, 2015.
[60]A. Tiwari and M. S. Sodha, “Performance evaluation of solar PV/T system: an experimental validation.” Solar Energy, Vol. 80, No. 7, pp. 751-759, 2006.
[61]張心紜,「能源報導-投資太陽能,這樣做就對了!」,經濟部能源局,中華民國,2014。

無法下載圖示 全文公開日期 2020/08/25 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 2020/08/25 (國家圖書館:臺灣博碩士論文系統)
QR CODE