簡易檢索 / 詳目顯示

研究生: 吳權哲
Cyuan-Jhe Wu
論文名稱: 以噬菌體一步完成有機磷水解酶與親和性胜肽鏈之組裝與應用
One-Step Assembly of Organophosphorus Hydrolase and Affinity Peptide on Phage and Its Application
指導教授: 蔡伸隆
Shen-Long Tsai
口試委員: 張家耀
Jia-Yaw Chang
王勝仕
Steven S.-S. Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 74
中文關鍵詞: 有機磷化合物有機磷酸水解酶M13s噬菌體
外文關鍵詞: (Organophosphate compounds, Organophosphorusshydrolase, filamentous bacteriophage
相關次數: 點閱:201下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

有機磷化合物 (Organophosphate compounds) 為一種神經毒素,廣泛用於製造農藥及殺蟲劑,因為在大量使用下對環境或是人體皆造成重大危害,所以在嚴格控管的條件下,能快速的偵測其在環境中的濃度,以及有效處理是一個重要的議題。
本研究所使用的偵測法是以有機磷酸水解酶 (Organophosphorus hydrolase, OPH) 為主,並搭配電化學分析法偵測。因 OPH 具有降解機磷化合物的功能,可應用於有機磷農藥的降解及檢測,是一種具有高發展潛力的酵素。我們藉由基因工程技術來改良 M13 噬菌體 (filamentous bacteriophage) 並以此當作平臺,再利用噬菌體展示技術 (phage display technology) 和亮胺酸拉鍊 (leucine zipper) 將 OPH 酵素展示於噬菌體的pVIII殼蛋白表面上,同時將對低碳鋼 (mild steel) 具有親和性的胜肽鏈也展示於噬菌體的pIII殼蛋白表面上,以利於噬菌體能連結到電極表面。而使用噬菌體固定化酵素催化能力 (kcat/KM = 342.20) 會比未固定化酵素的催化能力 (kcat/KM = 42.66) 高出8.02倍之多,此外偵測的靈敏度也會隨之提高。


Organophosphorus compounds are considered as neurotoxins, and are widely used in the manufacturing of pesticides and insecticides. Due to its extensive usage, it already has affected both human health and environment. Currently, these compounds are regulated and monitored for environmental safety thus, its immediate detection and effective treatment are an important concern.
In this study, the activity of Organophosphorus hydrolase (OPH) was determined via electrochemical analysis and spectrophotometer. Because of its ability to degrade organophosphorus compounds, it can be applied for the detection of organophosphorus compounds. Here, to improve the activity of OPH, the phage display technology (using M13 filamentous bacteriophage) which utilized the leucine zipper as a scaffold was applied. Specifically, the OPH enzyme was displayed on the surface of the pVIII coat protein of M13 phage via leucine zippers. In addition, a mild steel affinity peptide was simultaneously displayed on the pIII coat protein such that the entire phage can be immobilized on the mild steel electrode surface. The most important is that the produced phage can easily recovery by centrifugation rather than labor waste procedure.

總目錄 摘要 Abstract 誌謝 總目錄 表目錄 圖目錄 第一章 緒論 1.1 研究背景 1.2 研究動機與目的 1.3 研究內容 第二章 文獻回顧 2.1 有機磷化合物對環境之影響 2.1.1 有機磷化合物毒性機制 2.2 有機磷水解酶 2.3 生物感測器 2.4 噬菌體之簡介 2.4.1 噬菌體展示技術 2.5 蛋白質交互作用 2.6 金屬結合胜肽鏈 2.7 酵素動力學探討 2.8 循環伏安法 2.9 電化學阻抗頻譜 第三章 材料與方法 3.1 儀器與材料 3.2 實驗流程 Scheme 3.3 質體純化法 3.4 聚合酶鏈反應 3.5 瓊脂凝膠電泳與回收 3.6 限制酶酶切作用 3.7 核酸接合與轉殖法 3.8 電穿孔勝任細胞製備及電穿孔轉殖作用 3.9 噬菌體融合蛋白表面表達及回收 3.10 噬菌體展示胜肽鏈親和性測試 3.11 噬菌體滴度測試 3.12 SDS-PAGE 凝膠電泳 3.13 西方墨點法 3.14 有機磷水解酶活性測定 3.15 電化學頻譜測定 3.16 循環伏安法測定 3.17 Bradford 與 ImageJ 定量 第四章 結果與討論 4.1 噬質體建立 4.2 滴度值分析 4.3 SDS-PAGE 4.4 活性測試 4.5 電化學阻抗頻譜 4.6 循環伏安法 第五章 結論 參考資料

70

參考資料
1. 翁志弘,
農藥市場發展現況及趨勢
. 國家實驗研究院科技政策研究與資訊
中心, 2016.
2. Report, F.a.A.O.o.t.U.N., The State of Food and Agriculture 2001.
3. Institute of Labor, O.S.a.H., Minister of Labor Exposure Assessment for
Taiwanese Agriculturist during Spraying Organophosphate Pesticide. 2014.
4. Jeffrey, S.K., et al., Use of Microorganisms and Microbial Systems in the
Degradation of Pesticides. Biotechnology in Agricultural Chemistry, 1987.
American Chemical Society: p. 156-170.
5. Moretto, A., Experimental and clinical toxicology of anticholinesterase agents.
Toxicology Letters 1998. 103-103 (0): p. 509-513.
6. Tuovinen K, K.E., Raushel FM, Hanninen O, Phosphotriesterase-A promising
candidate for use in detoxification of organophosphates. Fund Appl Toxicol,
1994(23): p. 579-584.
7. Sethunathan N, Y.T., A Flavobacterium that degrades diazinon and parathion.
Can J Microbiol. 1973: p. 873-875.
8. Munnecke, D.M., Hydrolysis of organophosphate insecticides by an
immobilized-enzyme system. Biotechnology and Bioengineering, 1979. 21(12):
p. 2247-2261.
9. M.M. Benning, M.J.K., M.F. Raushel, H.M. Holden, Three-Dimensional
Structure of Phosphotriesterase An Enzyme Capable of Detoxifying
Organophosphate Nerve Agents. Biochemistry, 1994. 33: p. 15001-15007.
10. G.A. Omburo, J.M.K., L.S. Mullins, F.M. Raushel, Characterisation of the zinc
binding site of bacterial phosphotriesterase. . J. Biol. Chem., 1992. 267: p.
13278-13283.
11. A. Mulchandani, W.C., P. Mulchandani, J. Wang, K.R. Rogers, Biosens.
Bioelectron, 2001. 16: p. 225.
12. Hossain, M.M., et al., Amperometric proton selective strip-sensors with a
microelliptic liquid/gel interface for organophosphate neurotoxins.
Electrochemistry Communications, 2011. 13(6): p. 611-614.
13. Rogers KR, W.Y., Mulchandani A,Mulchandani P, Chen W, Organophosphorus
hydrolase based assay for organophosphate pesticides. Biotechnol Prog, 1999.
15: p. 517-521.
14. Sahin A, D.K., Cropek D.M.,West A.C.,Banta S, A dual enzyme electrochemical
assay for the detection of organophosphorus compounds using
organophosphorus hydrolase and horseradish peroxidase. Sensors and 71

Actuators B: Chemical, 2011. 158(1): p. 353-360.
15. Thakur, S., et al., A fluorescence based assay with pyranine labeled hexa-
histidine tagged organophosphorus hydrolase (OPH) for determination of
organophosphates. Sensors and Actuators B: Chemical, 2012. 163(1): p. 153-
158.
16. Kim CS, C.B., Seo JH, Lim G, Cha HJ, Mussel adhesive protein-based whole
cell array biosensor for detection of organophosphorus compounds. Biosens
Bioelectron, 2013. 41: p. 199-204.
17. Shaveena T, P.K., M. Venkateswar R, D. Siddavattamc, A.K. Paul, Enhancement
in sensitivity of fluorescence based assay for organophosphates detection by
silica coated silver nanoparticles using organophosphate hydrolase. Sensors and
Actuators B: Chemical, 2013. 178: p. 458-464.
18. Mulchandani, A., Mulchandani, P., Chen, W., Wang, J., Chen, L.,
Amperometric thick film strip electrodes for monitoring
organophosphate nerve agents based on immobilized
organophosphorus hydrolase. ANAL CHEM, 1999. 71(11): p. 2246-2249.
19. Chough, S.H., Mulchandani, A., Mulchandani, P., Chen, W., Wang, J., Rogers,
K.R., Organophosphorus hydrolase-based amperometric sensor:
Modulation of sensitivity and substrate selectivity. ELECTROANAL,
2002. 14(4): p. 273-276.
20. A.K. Singh, A.W.F., J.V. Volponi, C.S. Ashley, K. Wally, J.S. Schoeniger,
Biosens. Bioelectron, 1999. 14: p. 703.
21. B.G. Choi, H.P., T.J. Park, D.H. Kim, S.Y. Lee, W.H. Hong, Electrochem.
Commun, 2009. 11: p. 672.
22. Shasha, S.M., N. Sharon, and M. Inbar, Bacteriophages as antibacterial agents.
Harefuah, 2004. 143(2): p. 121-5, 166.
23. Hoogenboom, H.R., et al., Antibody phage display technology and its
applications. Immunotechnology, 1998. 4(1): p. 1-20.
24. Brigati, J., et al., Diagnostic Probes for Bacillus anthracis Spores Selected from
a Landscape Phage Library. Clinical Chemistry, 2004. 50(10): p. 1899-1906.
25. Mao, C., A. Liu, and B. Cao, Virus-Based Chemical and Biological Sensing.
Angewandte Chemie (International ed. in English), 2009. 48(37): p. 6790-6810.
26. Liu, A., G. Abbineni, and C. Mao, Nanocomposite Films Assembled from
Genetically Engineered Filamentous Viruses and Gold Nanoparticles:
Nanoarchitecture- and Humidity-Tunable Surface Plasmon Resonance Spectra.
Advanced Materials, 2009. 21(9): p. 1001-1005.
27. Barrow, P.A. and J.S. Soothill, Bacteriophage therapy and prophylaxis:
rediscovery and renewed assessment of potential. Trends Microbiol, 1997. 5(7): 72

p. 268-71.
28. Smith, G.P. and J.K. Scott, Libraries of peptides and proteins displayed on
filamentous phage. Methods Enzymol, 1993. 217: p. 228-57.
29. Russell, S.J., Peptide-displaying phages for targeted gene delivery? Nat Med,
1996. 2(3): p. 276-7.
30. Qi, H., et al., Phagemid vectors for phage display: properties, characteristics
and construction. J Mol Biol, 2012. 417(3): p. 129-43.
31. Yang, W.-J., Epitopes mapping and vaccine development of Mycoplasma
hyopneumoniae through phage display technology. 2003.
32. Denhardt, R.L.R.a.D.T., Vectors: a survey of molecular cloning vectors and their
uses. Biotechnology, 1987: p. 61-83.
33. Smith, G., Filamentous fusion phage: novel expression vectors that display
cloned antigens on the virion surface. Science, 1985. 228(4705): p. 1315-1317.
34. Pershad, K. and B.K. Kay, Generating thermal stable variants of protein
domains through phage display. Methods, 2013. 60(1): p. 38-45.
35. Koivunen, E., B. Wang, and E. Ruoslahti, Phage libraries displaying cyclic
peptides with different ring sizes: ligand specificities of the RGD-directed
integrins. Biotechnology (N Y), 1995. 13(3): p. 265-70.
36. Iannolo, G., et al., Modifying filamentous phage capsid: limits in the size of the
major capsid protein. J Mol Biol, 1995. 248(4): p. 835-44.
37. Makowski, L., Structural constraints on the display of foreign peptides on
filamentous bacteriophages. Gene, 1993. 128(1): p. 5-11.
38. Smith, G.P. and A.M. Fernandez, Effect of DNA copy number on genetic stability
of phage-displayed peptides. Biotechniques, 2004. 36(4): p. 610-4, 616, 618.
39. Bass, S., Greene, R. & Wells, J. A., Proteins: Structure, Function and Genetics.
1990.
40. Lowman, H.B., et al., Selecting high-affinity binding proteins by monovalent
phage display. Biochemistry, 1991. 30(45): p. 10832-10838.
41. Dong-Xia, D. and Z. Ran, Application and Progress of Helper Phage in Phage
Display. Microbiology, 2009(2): p. 261-266.
42. Bass, S., Greene, R. & Wells, J. A., Hormone phage: an enrichment method for
variant proteins with altered binding-properties. Proteins: Struct., 1990: p. 309–
314.
43. Breitling, F., Dubel, S., Seehaus, T., Klewinghaus, I. & Little, M. , A surface
expression vector for antibody screening. Gene, 1991: p. 147–V 153.
44. Stynen, B., et al., Diversity in genetic in vivo methods for protein-protein
interaction studies: from the yeast two-hybrid system to the mammalian split-
luciferase system. Microbiol Mol Biol Rev, 2012. 76(2): p. 331-82. 73

45. Staudinger, J., et al., Interactions among vertebrate helix-loop-helix proteins in
yeast using the two-hybrid system. J Biol Chem, 1993. 268(7): p. 4608-11.
46. O'Shea, E.K., K.J. Lumb, and P.S. Kim, Peptide 'Velcro': design of a
heterodimeric coiled coil. Curr Biol, 1993. 3(10): p. 658-67.
47. Rieker, J.D., and Hu, J.C., Molecular Applications of Fusions to Leucine
Zippers. Methods in Enzymology, 2000. 328: p. 282-296.
48. Malik, P., et al., Role of capsid structure and membrane protein processing in
determining the size and copy number of peptides displayed on the major coat
protein of filamentous bacteriophage. J Mol Biol, 1996. 260(1): p. 9-21.
49. Colic, M., et al., Relationship between microstructure, cytotoxicity and corrosion
properties of a Cu-Al-Ni shape memory alloy. Acta Biomater, 2010. 6(1): p. 308-
17.
50. Armitage, D.A., T.L. Parker, and D.M. Grant, Biocompatibility and
hemocompatibility of surface-modified NiTi alloys. J Biomed Mater Res A,
2003. 66(1): p. 129-37.
51. Brown, S., M. Sarikaya, and E. Johnson, A genetic analysis of crystal growth. J
Mol Biol, 2000. 299(3): p. 725-35.
52. Park, T.J., et al., Development of a whole-cell biosensor by cell surface display
of a gold-binding polypeptide on the gold surface. FEMS Microbiol Lett, 2009.
293(1): p. 141-7.
53. Cohen, S.N., A.C.Y. Chang, and L. Hsu, Nonchromosomal Antibiotic Resistance
in Bacteria: Genetic Transformation of Escherichia coli by R-Factor DNA. Proc
Natl Acad Sci U S A, 1972. 69(8): p. 2110-4.
54. Zuo, R., D. Ö rnek, and T.K. Wood, Aluminum- and mild steel-binding peptides
from phage display. Applied Microbiology and Biotechnology, 2005. 68(4): p.
505-509.
55. Whaley SR, E.D., Hu EL, Barbara PF, Belcher AM, Selection of peptides with
semiconductor binding specificity for directed nanocrystal assembly. Nature,
2000. 405: p. 665-668.
56. JM, B., T. JL, and S. L, The Michaelis-Menten Model Accounts for the Kinetic
Properties of Many Enzymes. Biochemistry. 5th, 2002.
57. JM, B., T. JL, and S. L, Vmax and KM Can Be Determined by Double-
Reciprocal Plots. Biochemistry. 5th 2002.
58. Bao, J., et al., ELP-OPH/BSA/TiO2 nanofibers/c-MWCNTs based biosensor for
sensitive and selective determination of p-nitrophenyl substituted
organophosphate pesticides in aqueous system. Biosensors and Bioelectronics,
2016.
59. Dervisevic, M., Custiuc, E., Cevik, E., Senel, M., Construction of novel xanthine biosensor by using polymeric mediator/MWCNT
nanocomposite layer for fish freshness detection. FOOD CHEM, 2015. 181: p.
277-283.
60. Du, D., et al., Covalent coupling of organophosphorus hydrolase loaded
quantum dots to carbon nanotube/Au nanocomposite for enhanced detection of
methyl parathion. Biosensors and Bioelectronics, 2010. 25(6): p. 1370-1375.
61. Stratagene, TG1 Electroporation-Competent Cells. 2001. 23(11).
62. 蘇福祥, Designer Outer Membrane Vesicles as Nanobiocatalysts for Pesticides
Degradation. 2015.

無法下載圖示 全文公開日期 2021/08/19 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE