簡易檢索 / 詳目顯示

研究生: 張瑋倫
Wei-Lun Chang
論文名稱: IC封裝模具熱均勻性和熱應力數值分析之研究
Numerical study of thermal uniformity and thermal stress analysis for the mold of IC packaging
指導教授: 陳明志
Ming-Jyh Chern
口試委員: 趙振綱
Ching-Kong Chao
王謹誠
Jin-Cheng Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 71
中文關鍵詞: IC封裝加熱棒設計熱均勻性熱應力溫度回饋控制
外文關鍵詞: IC packaging, Heater design, Thermal uniformity, Thermal stress, Thermal feedback control system
相關次數: 點閱:240下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在現代,積體電路(IC)的需求不斷提升,為了增加封裝IC數量,用來封裝的模具也越做越大。加熱棒的設計對於模具表面熱均勻性和封裝IC的品質存在著顯著的影響,然而大面積模具比小模具更難加熱到良好的熱均勻性。在本研究中,數值方法被用來模擬三種類型大面積模具加熱棒設計的熱均勻性,例如:傳統直線型,蛇型和螺旋型,每種設計的面積為500*500mm^2。因此,最佳化的加熱棒設計可以提高IC封裝的生產效率。此外,本研究還考慮了模具加熱棒設計中由熱應力引起的變形量。研究人員使用溫度回饋控制系統來避免連續監測的需要。為了通過回饋系統有效控制模具溫度,本研究針對不同的加熱器設計使用了不同的採樣點。最後,根據模具表面熱均勻性只有0.3%和實現熱均勻性所花費的時間為119分鐘與其他設計只相差10分鐘可以發現傳統直線型為IC封裝最佳的加熱棒設計模具。


In the modern era, the demand for the integrated circuit (IC) is rising continuously. In order to increase the number of packaged IC, the molds used for packaging are getting larger in size. The design of the heater has a significant effect on the thermal uniformity of the mold surface and the quality of the packaged IC. However, large area molds are more difficult to heat with good thermal uniformity than small molds. In this study, numerical methods are used to simulate the thermal uniformity of three types of large area mold heater designs. For example: conventional straight, serpentine and spiral each having an area of 500*500 mm^2. Therefore, optimization of the heater design can lead to increased production efficiency of IC packaging. Moreover, this study also considers the amount of deformation caused by thermal stress in the design of the mold heater. Researchers use thermal feedback control systems to avoid the need for continuous monitoring. For effective control of the mold temperature through the feedback system, this study used different sampling points for the different heater designs. Finally, according to the thermal uniformity of the mold surface is only 0.3% and the time taken to achieve thermal uniformity is 119 minutes, which is only 10 minutes away from serpentine type, it has been found that the conventional straight type is the optimal heater mold design for packaged IC.

Chinese Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Nomenclatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii 1 INTRODUCTION 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 MATHEMATICAL FORMULAE AND NUMERICAL METHOD 6 2.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.1 Conjugate heat transfer . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.2 Thermal stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Boundary and initial condition . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 Numerical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.4 Computational domain and computing resource . . . . . . . . . . . . . . . 12 2.5 Grid independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3 RESULTS AND DISCUSSION 14 3.1 Conventional straight type heater . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Serpentine type heater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3 Spiral type heater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4 CONCLUSIONS AND FUTURE WORK 20 4.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Appendix A Use feedback to control heaters in COMSOL 50 CURRICULUM VITAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Smart Electronics Industry Project Promotion Office(SIPO),https://www.sipo.org.tw/industry-overview/industry-status-quo/semiconductor-industry-status-quo.html

Wang, G.L., Yang, H., \& Zhang, L., 2017 Research on temperature and pressure responses in the rapid mold heating and cooling method based on annular cooling channels and electric heating. International Journal of Heat and Mass Transfer 116, 1192–1203.

Wang, G.L., Zhao, G.Q., \& Wang, X.X., 2014 Development and evaluation of a new rapid mold heating and cooling method for rapid heat cycle molding. International Journal of Heat and Mass Transfer 78, 99–111.

Li, X.P., Zhao, G.Q., Guan, Y.J., \& Ma, M.X., 2009 Optimal design of heating channels for rapid heating cycle injection mold based on response surface and genetic algorithm. Materials and Design 30, 4317–4323.

Nian, S.C., Huang, M.S., \& Tsai, T.H., 2014 Enhancement of induction heating efficiency on injection mold surface using a novel magnetic shielding method. International Communications in Heat and Mass Transfer 50, 52–60.

Huang, M.S., \& Huang, Y.L., 2010 Effect of multi-layered induction coils on efficiency and uniformity of surface heating. International Journal of Heat and Mass Transfer 53, 2414–2423.

Bui, H.T., \& Hwang, S.J., 2015 Modeling a working coil coupled with magnetic flux concentrators for barrel induction heating in an injection molding machine. International Journal of Heat and Mass Transfer 86, 16–30.

Cheng, L.X., Huang, H.X., \& Yang, X., 2016 Development and application of rapid thermal cycling molding with electric heating for improving surface quality of microcellular injection molded parts. Applied Thermal Engineering 100, 478–489.

Tang, S.H., Kong, Y.M., Sapuan, S.M., Samin, R., \& Sulaiman, S., 2006 Design and thermal analysis of plastic injection mould. Journal of Materials Processing Technology 171, 259-267.

QR CODE