簡易檢索 / 詳目顯示

研究生: 陳冠辰
Kuan-Chen Chen
論文名稱: 適體-細菌視紫質生物光電感測晶片之探討
Study of aptamer-bacteriorhodopsin photoelectric biochips
指導教授: 陳秀美
Hsiu-Mei Chen
口試委員: 王鐘毅
Chung-Yih Wang
何明樺
Ming-Hua Ho
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 100
中文關鍵詞: 核酸適體細菌視紫質
外文關鍵詞: aptamer, bacteriorhodopsin
相關次數: 點閱:203下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

存在於古生嗜鹽菌Halobacterial salinarum中的紫色細胞膜(purple membrane, PM)是由細菌視紫質(bacteriorhodopsin)和脂質所構成。由於BR受綠光激發後會產生跨PM膜之質子梯度,因此可用此特性來以PM產生光電流及製作生物晶片。本研究探討以核酸適體(aptamer)為生物辨識分子,應用於PM生物光電感測晶片製作。先在胺基化ITO玻璃上塗覆氧化avidin再以生物親和吸附將經biotin修飾的PM固定化,接著再利用化學鍵結法將修飾有胺基的專一性核酸適體固定化於PM晶片上,即可檢測Lactobacillus acidophilus。研究中分析每一層塗覆後PM晶片之光電流響應變化,並用循環伏安法、傅立葉轉換紅外線光譜與拉曼光譜分析以確認核酸適體之固定化,並可吸附微生物。在最適化製程下,檢測L. acidophilus在高濃度時,晶片光電流密度下降90 %左右,檢測靈敏度可低達10 CFU/mL以下;而對同樣高濃度的E. coli菌液進行吸附時,晶片光電流密度下降僅30 %,顯示所製備晶片具有辨識性且專一性佳。


The purple membranes (PM) residing in archeaon Halobacterial salinarum contain bacteriorhodopsin and lipids. A proton gradient across PM is formed when bacteriorhodopsin is activated by illumination with green light; therefore, PM can be readily applied to generating photoelectricity as well as to devising biochips. This research aimed to investigate the employment of aptamers as the recognition element for fabrication of a PM-based photoelectric biosensor chip. The chip was prepared by first bioaffinity-immobilizing biotinylated PM on an aminated ITO electrode with oxidized avidin as the linker, followed by covalently conjugating Lactobacillus acidophilus-specific aminated aptamers on the PM-chip. Photocurrent measurement, cyclic voltammetry (CV), Fourier transform infrared spectroscopy, and Raman spectroscopy were employed to layer-by-layer examine each coating layer, confirming the aptamer immobilization as well as microorganism adsorption. With the optimized chip fabrication process, the aptamer-coated PM chip had a detection limit below 10 CFU/mL for L. acidophilus and the photocurrent generated by the chip declined 90% at high concentration. On the other hand, only 30% photocurrent reduction was observed for the detection of Escherichia coli at the same cell density, suggesting selective recognition of L. acidophilus by the as-prepared aptamer-PM composite chip.

摘要 I Abstract II 表目錄 VI 圖目錄 IX 縮寫對照表 XIV 第一章 緒論 1 第二章 文獻回顧 2 2-1 細菌視紫質 2 2-1-1 Halobacterium salinarum 2 2-1-2 BR結構 3 2-1-3 BR 光循環與質子傳遞 4 2-1-4 BR光電流訊號 6 2-2 核酸適體 9 2-2-1 核酸適體發展歷史 9 2-2-2 核酸適體篩選與性質 10 2-2-2-1 SELEX方法比較 11 2-2-3 核酸適體與抗體比較 15 2-2-4微生物檢測應用之核酸適體 17 2-2-5 核酸適體式生物感測器 18 2-2-5-1 電化學式 18 2-2-5-2 光學式 20 2-2-5-3 酵素結合免疫吸附分析法 23 2-2-5-4其他方式 25 第三章 實驗 26 3-1 實驗目的 26 3-2 實驗設備 27 3-3 實驗流程 28 3-4 實驗測量 29 3-4-1微分光電流訊號量測 29 3-4-2 傅立葉轉換紅外光譜 30 3-4-3 拉曼光譜儀 30 3-4-4循環伏安法測量 31 第四章 結果與討論 32 4-1 使用EDC/NHS將核酸適體固定化於PM晶片 32 4-1-1 循環伏安法分析 33 4-1-2 微分光電流訊號分析 37 4-1-3 NaCl濃度對核酸適體固定化與檢測菌的影響 38 4-2 適體結構模擬 41 4-2-1以模擬決定核酸適體固定化反應條件 41 4-2-1-1改變核酸適體固定化反應之NaCl濃度 41 4-2-1-2 改變核酸適體固定化反應溫度 47 4-2-2以模擬決定晶片檢測菌條件 51 4-3 使用交聯劑固定化核酸適體於PM晶片 55 4-3-1 以核酸適體-PM複合晶片檢測L. acidophilus之初步探討 56 4-3-2 FTIR 分析 58 4-3-3 Raman分析 63 4-4 以交聯劑固定化核酸適體於PM晶片之最適化 68 4-4-1 交聯劑濃度探討 68 4-4-2 核酸適體固定化濃度探討 70 4-4-3 核酸適體固定化反應時間探討 72 4-4-4 以最適化核酸適體-PM複合晶片檢測L. acidiphilus之檢量線 73 4-4-5 核酸適體-PM複合晶片之專一性探討 75 第五章 結論 78 第六章 參考文獻 80

鄭凱如、胡孔政、蔡孟訓、陳秀美“細菌視紫質光敏蛋白於生物感測的新型應用”台灣化學工程學會化工會刊,2011,第58卷,第4期,82-92.
Braiman, M.; Mathies, R. Resonance raman spectra of bacteriorhodopsin's primary photoproduct: evidence for a distorted 13-cis retinal chromophore. Proceedings of the National Academy of Sciences of U nited States of America, 1982, 79, 403-407.
Cho, E. J.; Lee, J. W.; Ellington, A. D. Applications of aptamers as sensors. Annual Review Analytical Chemistry, 2009, 2, 241-264.
Conrad, R.; Keranen, L. M.; Ellington, A. D.; Newton, A. C. Isozyme-specific inhibition of protein kinase C by RNA aptamers. Journal of Biological Chemistry, 1994, 269, 32051-32054.
Ellington, A. D.; Szostak, J. W. In vitro selection of RNA molecules that bind specific ligands. Nature, 1990, 346, 818-822.
Gaus, K.; Rösch, P.; Petry, R.; Peschke, K. D.; Ronneberger, O.; Burkhardt, H.; Baumann, K.; Popp, J. Classification of lactic acid bacteria with UV-resonance Raman spectroscopy. Biopolymers, 2006, 82, 286-290.
Hampp, N. Bacteriorhodopsin as a photochromic retinal protein for optical memories. Chemical Reviews, 2000, 100, 1755-1776.
Hernandez, R.; Valles, C.; Benito, A. M.; Maser, W. K.; Rius, F. X.; Riu, J. Graphene-based potentiometric biosensor for the immediate detection of living bacteria. Biosens Bioelectron, 2014, 54, 553-557.
Honzatko, R. B.; Williams, R. W. Raman spectroscopy of avidin: secondary structure, disulfide conformation, and the environment of tyrosine. Biochemistry, 1982, 21, 6201-6205.
Jenison, R. D.; Gill, S. C.; Pardi, A.; Polisky, B. High-resolution molecular discrimination by RNA. Science, 1994, 263, 1425-1429.
Jess, P. R. T.; Garces-Charvez, V.; Smith, D.; Mazilu, M.; Paterson, L.; Riches, A.; Herrington, C. S.; Sibbett, W.; Dholakia, K. Dual beam fibre trap for Raman micro-spectroscopy of single cells. Optics Express, 2006, 14, 5779.
Jin, Y.; Honig, T.; Ron, I.; Friedman, N.; Sheves, M.; Cahen, D. Bacteriorhodopsin as an electronic conduction medium for biomolecular electronics. Chemical Society Reviews, 2008, 37, 2422-2432.
Kawamura, I.; Ohmine, M.; Tanabe, J.; Tuzi, S.; Saitô, H.; Naito, A. Dynamic aspects of extracellular loop region as a proton release pathway of bacteriorhodopsin studied by relaxation time measurements by solid state NMR. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2007, 1768, 3090-3097.
Ozer, A.; Pagano, J. M.; Lis, J. T. New technologies provide quantum changes in the scale, speed, and success of SELEX methods and aptamer characterization. Molecular Therapy Nucleic Acids, 2014, 3, e183.
Park, S. M.; Ahn, J. Y.; Jo, M.; Lee, D. K.; Lis, J. T.; Craighead, H. G.; Kim, S. Selection and elution of aptamers using nanoporous sol-gel arrays with integrated microheaters. Lab on a Chip, 2009, 9, 1206-1212.
Qian, J.; Lou, X.; Zhang, Y.; Xiao, Y.; Soh, H. T. Generation of highly specific aptamers via micromagnetic selection. Analytical Chemistry, 2009, 81, 5490-5495.
Robertson, D. L.; Joyce, G. F. Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature, 1990, 344, 467-468.
Sapra, K. T.; Besir, H.; Oesterhelt, D.; Muller, D. J. Characterizing molecular interactions in different bacteriorhodopsin assemblies by single-molecule force spectroscopy. Journal of Molecular Biology, 2006, 355, 640-650.
Song, K. M.; Lee, S.; Ban, C. Aptamers and their biological applications. Sensors (Basel), 2012, 12, 612-631.
Song, S.; Wang, L.; Li, J.; Fan, C.; Zhao, J. Aptamer-based biosensors. Trends in Analytical Chemistry, 2008, 27, 108-117.
Tahmourespour, A.; Salehi, R.; Kasra Kermanshahi, R. Lactobacillus acidophilus-derived biosurfactant effect on GTFB and GTFC expression level in streptococcus mutans biofilm cells. Brazilian Journal of Microbiology, 2011, 42, 330-339.
Tuerk, C.; Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 1990, 249, 505-510.
Vivekananda, J.; Kiel, J. L. Anti-Francisella tularensis DNA aptamers detect tularemia antigen from different subspecies by Aptamer-Linked Immobilized Sorbent Assay. Laboratory Investigation, 2006, 86, 610-618.
Wang, J.-P.; Yoo, S.-K.; Song, L.; El-Sayed, M. A. Molecular mechanism of the differential photoelectric response of bacteriorhodopsin. The Journal of Physical Chemistry B, 1997, 101, 3420-3423.
Wang, J. Vectorially oriented purple membrane: characterization by photocurrent measurement and polarized-Fourier transform infrared spectroscopy. Thin Solid Films, 2000, 379, 224-229.
Wang, Y.-X.; Ye, Z.-Z.; Si, C.-Y.; Ying, Y.-B. Application of aptamer based biosensors for detection of pathogenic microorganisms. Chinese Journal of Analytical Chemistry, 2012, 40, 634-642.
Witt, M.; Walter, J.-G.; Stahl, F. Aptamer microarrays-current status and future prospects. Microarrays, 2015, 4, 115-132.
Wen, Z.-Q.; Cao, X.-L.; Phillips, J. Application of raman spectroscopy in biopharmaceutical manufacturing. 2010.
Zuo, P.; Li, X.; Dominguez, D. C.; Ye, B. C. A PDMS/paper/glass hybrid microfluidic biochip integrated with aptamer-functionalized graphene oxide nano-biosensors for one-step multiplexed pathogen detection. Lab on a Chip-Miniaturisation for Chemistry and Biology, 2013, 13, 3921-3928.

無法下載圖示 全文公開日期 2020/08/24 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE