簡易檢索 / 詳目顯示

研究生: 李俊中
Jyun-jhong Lee
論文名稱: 製備金屬電極應用於可拋式葡萄糖生物感測器
Preparation of metal electrodes for the applications in disposable glucose biosensors
指導教授: 王孟菊
Meng-jiy Wang
口試委員: 林俊成
Jing-cheng Lin
王文
Wen Wang
黃炳照
Bing-joe Hwang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 89
中文關鍵詞: 葡萄糖生物感測器金屬電極幾丁聚醣二硫蘇糖醇
外文關鍵詞: glucose biosensor, metal electrode, chitosan, dithiothreitol
相關次數: 點閱:494下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 糖尿病是一種全球性的文明病,其併發症亦是造成殘疾或死亡的主因,造成糖尿病主要是因胰島素的不足或高血糖所引發的。病患長期處於高血糖狀態下,易罹患心臟病、腎衰竭及失明的疾病,因此糖尿病患需嚴格的監控管理與維持血糖正常值,而人體正常血糖範圍值為80 - 120 mg/dL。提供攜帶方便、可靠性高與低成本的一次性試片是現今血糖感測研究中的一大挑戰課題。
    本研究主要是利用磁控濺鍍金屬電極作為可拋式感測的試片,取代網印碳電極。金屬電極的電阻遠低於網印碳電極,有效的降低驅動電壓由0.4 V降於0.1 V,對於人體電活性物質尿酸、維他命C、對乙酰氨基酚造成的干擾降低。目前一般市售金屬電極主要以貴重金屬(金或白金)作為導電金屬,主要的問題莫過於成本過於高昂。雖然網印碳電極便宜,但於網印技術須控制極複雜參數,所以在網印碳電極之再現性一直居高不下。本研究重在於鈦和鎳鉻電極的改質,並以幾丁聚醣(chitosan)修飾,因幾丁聚醣具有良好的生物相容性,能使酵素處於一個穩定的環境,故在電極上修飾一層幾丁聚醣更可有效提升電極感測性能。本論文所製備之一次性電極效能具有廣泛的線性感測範圍(50mg/dL – 600 mg/dL)、高再現性、長時間穩定性、及高靈敏度0.0309 (鈦鍍金電極)、0.0259 (鎳鉻鍍金電極) μA/(mg/dL),並且已進一步成功的利用血液進行實驗。感測層方面,主要成分有PVA (polyvinyl alcohol)、PVP/VA (poly (vinylpyrrolidone-vinyl acetate))、GOx (glucose oxidase)、ferricyanide、dithiothreitol (DTT)、HEC (hydroxyethylcellulose)。於材料表面分析中,利用ESCA分析修飾前後的鈦與鎳鉻電極,以及利用掃描式電子顯微鏡觀察其表面形態的改變,而電化學特性則是以循環伏安法以及計時安培法進行分析。


    Diabetes is a global disease of civilization, and its complications are the main reason to cause disability or death. Diabetes is generall resulted from insulin deficiency and high blood sugar. The diabetes patients are easily suffered from heart disease, kidney failure and blindness with long-time high glucose. However, patients need strict monitoring of blood sugar concentration to control blood glucose levels. It’s an important challenge to produce highly reliability, portability, and low cost for disposable glucose chips in the recent research.
    In this study, the magnetron sputtering metallization electrode was used to replace the screen-printed carbon electrode (SPCE) for preparing disposable sensors. The resistance of the metal electrode is much lower than the SPCE, which can effectively reduce the driven potential of the redox mediator from 0.4V to 0.1V. By reducing driving potential, it could reduce the interference effect of electroactive material in human body such as uric acid, ascorbic acid, and acetaminophen. Generally, the commercially available metal electrodes employed precious metals such as gold or platinum. The main problem of using precious metals is high cost. Although the SPCE is cheap, various and complex parameters were usually problems. The modified titanium and nickel-chromium electrodes were prepared in this study. Those electrodes were decorated with a layer of chitosan for its good biocompatibility, hydrophilicity, and positive charge. The characteristics of chitosan with positive charge could effectively interact with the negative charged mediator under pH=5 and therefore added to enhance the oxidation and reduction currents. In addition, the sensing layer was composed of PVA (polyvinyl alcohol), PVP/VA(poly -(vinylpyrrolidone-vinylacetate), GOx (glucose, oxidase), ferricyanide, dithiothreitol (DTT), and HEC (hydroxyethylcellulose). The surface morphology and physical-chemical propertieson the titanium and nickel-chromium based electrodes were characterized by ESCA and scanning electron microscopy. The electrochemical characteristics of sensors were evaluaved bycyclic voltammetry and chronoamperometry methods.
    The performance of the disposable electrodes prepared in this thesis showed broad linear sensing range (50 mg/dL - 600 mg/dL), high reproducibility, long term stability, high sensitivity of 0.0309 (on titanium gold-plated electrode) and 0.0259 (on nickel-chromium gold-plated electrode) A/(mg/dL). Moreover, good results were obtaeind by testing the prepared metal electrodes with human blood.

    摘要 I Abstract II 致謝 IV 目錄 V 圖索引 VIII 表索引 XI 第一章 緒論 1 1-1 糖尿病簡介 1 1-2 研究動機 4 第二章 文獻回顧 5 2-1 感測器簡介 5 2-2 化學感測器簡介 6 2-3 生物感測器簡介 7 2-4 酵素簡介 15 2-5 三代葡萄糖感測器簡介 17 2-5.1 第一代葡萄糖感測器 17 2-5.2 第二代生物感測器 19 2-5.3 第三代生物感測器 20 2-6 感測器製作技術簡介 21 2-7 電化學分析方法簡介 26 2-7.1 循環伏安法 (Cyclic Voltammetry, CV) 26 2-7.2 計時安培法 (Chronoamperometry) 27 2-7.3 電化學阻抗分析法 28 2-8 幾丁聚醣簡介 30 2-8.1 幾丁聚醣來源 30 2-8.2 幾丁聚醣之性質 32 2-9 二硫蘇糖醇簡介 33 第三章 實驗方法 34 3-1 實驗設備 34 3-1.1 製膜設備 34 3-1.2 表面分析設備 34 3-2 實驗藥品及材料 36 3-2.1 藥品 36 3-2.2 材料 37 3-3 藥品配置 37 3-3.1 緩衝溶液配置 37 3-3.2 葡萄糖溶液配置 37 3-3.3 幾丁聚醣 (chitosan) 溶液配置 37 3-3.4 二硫蘇糖醇 (Dithiothreitol) 溶液配置 38 3-3.5 電活性物質溶液配置 38 3-3.6 聚乙烯醇 (PVA) 溶液配置 39 3-3.7 羥乙基纖維素 (HEC) 溶液配置 39 3-3.8 聚乙烯吡咯酮-醋酸乙烯酯 (PVP/VA) 溶液配置 39 3-3.9 Ferricyanide溶液配置 39 3-3.10 酵素固定層溶液配置 39 3-4 電極圖形及製備 41 3-4.1 電極圖形 41 3-4.2 電極製備 41 3-5 實驗架構 44 3-6 電化學分析 45 第四章 實驗結果 46 4-1 酵素固定層及電極表面形態分析 46 4-2 以金/鈦金屬電極製備葡萄糖感測試片 47 4-2.1 鈦、金、金/鈦金屬電極電化學特性比較 47 4-2.2 金/鈦金屬電極掃描速率效應 48 4-2.3 金/鈦金屬電極之chitosan修飾最適化探討 50 4-2.4 金/鈦金屬電極於酵素固定層添加二硫蘇糖醇適化探討 53 4-2.5 金/鈦金屬電極再現性結果 56 4-2.6 金/鈦金屬電極電活性物質干擾結果 57 4-2.7 金/鈦金屬電極穩定性結果 58 4-2.8 金/鈦金屬電極臨床血液測試結果 59 4-2.9 鈦金屬電極化學電子能譜分析結果 61 4-2.10 金/鈦金屬電極電化學阻抗分析結果 62 4-3 以金/鎳鉻金屬電極製備葡萄糖感測試片 64 4-3.1 鎳鉻、金/鎳鉻金屬電極電化學特性比較 64 4-3.2 金/鎳鉻金屬電極掃描速率效應 65 4-3.3 金/鎳鉻金屬電極再現性結果 66 4-3.4 金/鎳鉻金屬電極電化學分析 67 4-3.5 金/鎳鉻金屬電極電活性物質干擾結果 69 4-3.6 金/鎳鉻金屬電極穩定性結果 70 4-3.7 金/鎳鉻金屬電極臨床血液測試結果 71 4-3.8 鎳鉻金屬電極化學電子能譜分析結果 73 4-3.9 金/鎳鉻金屬電極電化學阻抗分析結果 74 4-4 市售葡萄糖感測試片 75 4-5.1 ONETOUCH 75 4-5.2 FOR A 78 4-5.3 其他廠牌 81 4-5 試片性能比較 84 4-6 成本分析 84 第五章 結論與未來方向 86 第六章 參考文獻 87

    [1] Wild M. B., Gojka R., Anders G., Richar S. Global Prevalence of Diabetes. Diabetes Care. 2004;27:1047-53.
    [2] Shaw J. E., Sicree R. A., Zimmet P. Z. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Research and Clinical Practice. 2010;87:4-14.
    [3] 陳詩喆. 電流式葡萄糖生物感測器之製備及測試. 國立台灣科技大學化學工程研究所碩士論文. 1998.
    [4] 台灣衛生署. 民國100年主要死因分析. 2010.
    [5] Lee S. R., Lee Y. T., Sawada K., Takao H., Ishida M. Development of a disposable glucose biosensor using electroless-plated Au/Ni/copper low electrical resistance electrodes. Biosensors and Bioelectronics. 2008;24:410-4.
    [6] 黃炳照、莊睦賢. 電化學感測器. 化工技術. 1993;7.
    [7] Walker J. M., Rapley R. 北京化學工業出版社. 2003.
    [8] 陳冠榮. 以奈米金修飾電極製備電流式免疫型感測器. 國立台灣科技大學工程研究所碩士論文. 2008.
    [9] 葉旻鑫. 均勻結構之複合式鉑銥奈米金屬觸媒/ 葡萄糖氧化酵素電極及其製備與應用. 國立臺灣科技大學化學工程系. 2009.
    [10] 一隻瀨昇、小林哲二;曹永偉編譯. 感測器原理與應用技術. 全華科技圖書股份有限公司. 1988.
    [11] Thevenot D. R., Durst R. A., Wilson G. S. Electrochemical biosensors: recommended definitions classification. Pure Application Chemistry. 1999;71:2333.
    [12] Turner A. P., Chen B., Piletsky S. A. In vitro diagnostics in diabetes: meeting the challenge. Clin Chem. 1999;45:1596-601.
    [13] Diamond D. Principles of Chemical and Biological Sensors. 1999;14.
    [14] 林正立. 溶膠-凝膠修飾電極和電流是乳酸感測器. 國立中正大學化學研究所博士論文. 2005.
    [15] Mohanty S. P., Kougianos E. Biosensors: a tutorial review. Potentials, IEEE. 2006;25:35-40.
    [16] Chaubey A., Malhotra B. D. Mediated biosensors. Biosensors and Bioelectronics. 2002;17:441-56.
    [17] Castillo J., Gaspar S., Leth S., Niculescu M., Mortari A., Csoregi I. Biosensors for life quality: Design, development and applications. Sensors and Actuators B: Chemical. 2004;179.
    [18] 田蔚城. 生物技術發展與應用. 九州圖書文物. 1997.
    [19] 陳春吉. 自主性單層薄膜電極之阻抗分析與其在內毒素檢測上之應用. 國立成功大學醫學工程研究所碩士論文. 2002.
    [20] 謝振傑. 光纖生物感測器. 物理雙月刊(廿八卷四期). 2006.
    [21] 許峰碩. 奈米碳黑在免疫層析檢測上的應用. 國立中興大學化學工程研究所碩士論文. 2002.
    [22] Ursula E. Chemical Sensors and Biosensors for Medical and Biological Applications. Wiley-VCH. 2008.
    [23] 呂鋒洲、林仁混. 基礎酵素學. 聯經出版社. 1991.
    [24] 劉英俊. 酵素工程. 中央圖書出版社. 1995.
    [25] 洪爭坊、郭肇凱、張正英. 淺談酵素. 台中區農情月刊第84期. 2007.
    [26] 呂慧菁. 電化學葡萄糖感測器之研發. 國立中興大學化學研究所碩士論文. 2003.
    [27] 呂博文. Fe3O4奈米微粒修飾性網印碳電極於葡萄糖生物感測器之研究. 國立雲林科技大學化學工程系碩士論文. 2006.
    [28] Shen J., Dudik L., Liu C. C. An iridium nanoparticles dispersed carbon based thick film electrochemical biosensor and its application for a single use, disposable glucose biosensor. Sensors and Actuators B: Chemical. 2007;125:106-13.
    [29] Gao Z., Xie F., Shariff M., Arshad M., Ying J. Y. A disposable glucose biosensor based on diffusional mediator dispersed in nanoparticulate membrane on screen-printed carbon electrode. Sensors and Actuators B: Chemical. 2005;111–112:339-46.
    [30] Tang Z., Lee J. H., Louie R. F., Kost G. J. Effects of Different Hematocrit Levels on Glucose Measurements With Handheld Meters for Point-of-Care Testing. Archives of Pathology & Laboratory Medicine. 2000;124:1135-40.
    [31] Sternberg R. B., Dilbir S. W., George S., Thevenot D. R. Covalent enzyme coupling on cellulose acetate membranes for glucose sensor development. Analytical Chemistry. 1988;60:2781-6.
    [32] Wang C., Chen S., Xiang Y., Li W., Zhong X., Che X., Li J. Glucose biosensor based on the highly efficient immobilization of glucose oxidase on Prussian blue-gold nanocomposite films. Journal of Molecular Catalysis B: Enzymatic. 2011;69:1-7.
    [33] 李坤易. 高感度葡萄糖生物感測器之研究. 國立雲林科技大學化學工程系碩士論文. 2006.
    [34] 施敏. 半導體元件物理及製作技術. 國立交通大學出版社. 2007.
    [35] Taufik P. Fabrication of a disposable glucose biosensor on screen-printed carbon electrodes. 國立台灣科技大學化學工程研究所碩士論文. 2008.
    [36] Laschi S., Mascini M. Medical Engineering and Physics. 2006;28:934.
    [37] 郭晉川. Fe3O4奈米微粒修飾性網印碳電極於乙醇生物感測器之研究. 國立雲林科技大學化學工程系碩士論文. 2006.
    [38] Brian R. E. Chemical Sensors and Biosensors. WILEY. 2005.
    [39] Skoog D. A., Holler F. J., Nieman T. A. Principles of Instrumental Analysis.: Saunders College Publishing, New York; 1997.
    [40] Bard A. J., Faulkner L. R. Electrochemical Methods: Fundamentals and Applications. Wiley. 2001.
    [41] Macdonald J. R. Impedance spectroscopy : emphasizing solid materials and systems. WILEY1987.
    [42] Yi H., Wu L. Q., Bentley W. E., Ghodssi R., Rubloff G. W., Culver J. N., Payne G. F. Biofabrication with Chitosan. BIOMACROMOLECULES. 2005;6.
    [43] Bégin A., Van C. Antimicrobial films produced from chitosan. International Journal of Biological Macromolecules. 1999;26:63-7.
    [44] 蕭力升. 幾丁聚醣對土壤中重金屬鎘移動性之影響. 朝陽科技大學環境工程與管理系碩士論文. 2007.
    [45] Zen J. M., Kumar A. S., Chen J. C., Jayachithra K., Balamurugan K., Chin D. H. Electrocatalytic cyclization of dithiothreitol on a chemically modified electrode by analogy with protein action. THE ANALYST. 2001.
    [46] Yang Q., Atanasov P., Wilkins E. Needle-type lactate biosensor. Biosensors and Bioelectronics. 1999;14:203-10.
    [47] Toghill K. E., Compton R. G. Electrochemical Non-enzymatic Glucose Sensors: A Perspective and an Evaluation. ELECTROCHEMICAL SCIENCE. 2010:1246 - 301.
    [48] Chen Z., Fang C., Qiu G., He J., Deng Z. Non-enzymatic disposable test strip for detecting uric acid in whole blood. Journal of Electroanalytical Chemistry. 2009;633:314-8.
    [49] Chen Z., Jiang J., Shen G., Yu R. Impedance immunosensor based on receptor protein adsorbed directly on porous gold film. Analytica Chimica Acta. 2005;553:190-5.
    [50] Yoo E. H., Lee S. Y. Glucose Biosensors: An Overview of Use in Clinical Practice. Sensors. 2010;10:4558-76.

    無法下載圖示 全文公開日期 2017/07/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE