簡易檢索 / 詳目顯示

研究生: 林揚祐
Yang-You Lin
論文名稱: 以穿隧型場效應結構觸發之橫向溝渠式絕緣閘極雙極性電晶體
Lateral trench-type insulated-gate bipolar transistor triggered by using tunneling-field-effect structure
指導教授: 莊敏宏
Miin-Horng Juang
口試委員: 張勝良
Sheng-Lyang Jang
徐世祥
Shih-Hsiang Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 97
中文關鍵詞: 橫向溝渠式絕緣閘極雙極性電晶體穿隧型場效應結構
外文關鍵詞: tunneling-field-effect, lateral trench-type
相關次數: 點閱:322下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

相較於功率金屬氧化物半導體場效電晶體與功率穿隧型場效電晶體,功率橫向絕緣閘極雙極性電晶體已經被提出在同樣耐壓下擁有較低的導通阻抗。原因為藉由穿隧電流導通元件的PN接面(P+-anode/n-drift),進而有效的降低漂移區的串聯電阻。在本論文中,探討了不同閘極位置對於平面式穿隧型場效應結構之絕緣閘極雙極性電晶體電性的影響,而其接面(P+-cathode/n-drift)電場與漂移區電場有著互相權衡的關係。此外,其元件的結構移除P型井與形成N型口袋會大幅提高帶對帶穿隧,使得導通電流明顯提升,然而空乏區的電場過大會導致耐壓能力衰退,所以最佳化其元件的特性則需要互相權衡導通電流與耐壓能力。
為了提升耐壓能力,溝渠式的穿隧型場效應結構之絕緣閘極雙極性電晶體被研究出擁有改善此問題的能力。然而此元件有N型口袋的結構後,不僅增強接面(P+-cathode/n-drift)電場同時也增強漂移區電場,因此相較於金屬氧化物半導體結構之絕緣閘極雙極性電晶體,此元件擁有較優的導通電流與耐壓能力。


The lateral insulated-gate bipolar transistor power device has been proposed that a smaller on-state voltage drop compared with metal-oxide-semiconductor field-effect transistor power device and tunneling-field-effect transistor power device. Because the P+-anode/N- drift junction of the device turn on, the large series resistance in the drift region can be effectively reduced. In this thesis, the results of different gate-positions of planar TFET-IGBT have been discussed, there is a trade-off between the electric field in P+-cathode/N- drift junction and N- drift region. Furthermore, planar TFET-IGBT with removal of P-well and ion implant to form n-pocket can significantly enhance the band-to-band tunneling near the P+-cathode/N- drift junction, and the on-current of the device would be obviously increased. Nevertheless, a large electric field in the depletion region of P+-cathode/N- drift junction would result in breakdown voltage degradation. Therefore, the optimization of the characteristics of planar TFET-IGBT requires a trade-off between forward current and reverse blocking voltage.
For improving the blocking voltage of the device, trench-type TFET-IGBT be studied with better breakdown characteristic. It is found that the usage of n-pocket can enhance the electric field of trench-type TFET-IGBT not only near the P+-cathode/N- drift junction but also in N- drift region. As a result, the on-state capability and blocking voltage characteristic of trench-type TFET-IGBT can be obviously improved compared with those of MOS-IGBT.

Abstract (Chinese) iii Abstract v Acknowledgement (Chinese) vi Contents vii Figure Captions viii Chapter 1 Introduction 1 1-1 Power MOSFET 1 1-2 MOS-IGBT 2 1-3 TFET 4 1-4 Motivation 6 1-5 Thesis organization 6 Chapter 2 Device Fabrication 7 2-1 Power MOSFET 8 2-2 MOS-IGBT 14 2-3 TFET 21 2-4 Planar TFET-IGBT with P-well 28 2-5 Trench-type TFET-IGBT without P-well 34 Chapter 3 Result and Discussion 40 3-1 The electrical characteristics of planar TFET-IGBT 40 3-1-1 The electrical characteristics of TFET-IGBT with P-well 41 3-1-2 The electrical characteristics of TFET-IGBT without P-well 48 3-1-3 The electrical characteristics of TFET-IGBT without P-well and with n-pocket 54 3-2 The electrical characterization of trench-type TFET-IGBT 60 3-2-1 The electrical characterization of TFET-IGBT without P-well 61 3-2-2 The electrical characterization of TFET-IGBT without P-well and with n-pocket 68 Chapter 4 Conclusions 78 Reference 79

[1] Lorenz, L. “Power semiconductor devices and smart power IC's - the enabling technology for future high efficient power conversion systems -” Proceedings of the International Power Electronics and Motion Control Conference, pp. 193-201 (2009)
[2] Baliga, B.J. “Trends in Power Semiconductor Device” IEEE Transactions on Electron Devices, vol. 43, no. 10, pp. 1717-1731 (1996)
[3] Choi, J. H.; Mao, Y.; Chang, J.P. “Development of hafnium based high-k materials - A review”, Materials Science and Engineering, vol. 72, pp. 97-136 (2011)
[4] Spuiber, O.; De Souza, M.M.; Narayanan, E.M.S.; Krishnan, S. “Analysis of A Cool-MOSFET”, Proceedings of the International Semiconductor Conference, vol. 1, pp. 131-134 (1999)
[5] Matsumoto, S.; Kim, I.J.; Sakai, T.; Fukumitsu, T.; Yachi, T. “Switching characteristics of a thin film-SOI power MOSFET”, Japanese Journal of Applied Physics, vol. 34, pp. 817-821 (1995)
[6] Sze, S.M. and NG, K.K. “Physics of Semiconductor Devices”, Third Edition, p.328-332 (2007)
[7] Bin Yu; Hsing-jen Wann; Assaderaghi, F.; Chan, M.; Roa-Wen Chen; Ping Ko;Chenming Hu “Interface characterization of fully-depleted SOI MOSFET by a subthreshold I-V method”, Proceedings of the IEEE International SOI Conference, pp. 63-64 (1994)

[8] Ben Akkez, I.; Cros, A.; Fenouillet-Beranger, C.; Perreau, P.; Margain, A.;Boeuf, F.; Balestra, F.; Ghibaudo, G. “Characterization and modeling of capacitances in FD-SOI devices”, 12-th International Conference on Ultimate Integration on Silicon, pp. 1-4 (2011)
[9] Y. Omura, “Proposal of high-temperature-operation tolerant SOI MOSFET and preliminary study on device performance evaluation”, Active and Passive Electronic Components, pp. 1-8 (2011)
[10] Napoli, E. “Deep depletion soi power devices”, Proceedings of the International Semiconductor Conference, vol. 1, pp. 3-12 (2006)
[11] Shuqing Cao; Salman, A.A.; Jung-Hoon Chun; Beebe, S.G.; Pelella, M.M.;Dutton, R.W. “Design and characterization of ESD protection devices for high-speed I/O in advanced SOI technology”, IEEE Transactions on Electron Devices, vol. 57, no. 3, pp. 644-653 (2010)
[12] Xiaorong Luo; Tianfei Lei; Yuangang Wang; Bo Zhang; Udrea, F. “A novel high voltage SOI LDMOS with Buried N-layer in a self-isolation high voltage integrated circuit”, Proceedings of the International Symposium on Power Semiconductor Devices and ICs, pp. 265-268 (2010)
[13] Vogler, B.; Rossberg, M.; Herzer, R.; Reusser, L. “Integration of 1200V SOI gate driver ICs into a medium power IGBT module package”, Proceedings of the International Symposium on Power Semiconductor Devices and ICs, pp. 97-100 (2010)
[14] Jayant Baliga, B. “Enhancement – and Depletion-Mode Vertical-Channel M.O.S. Gated Thyristors” Electronics Letters, vol. 15, no. 20, pp. 645-647 (1979)

[15] Plummer, James D.; Scharf, B.W. “Insulated-Gate Planar Thyristors: I-Structure and Basic Operation” IEEE Transactions on Electron Devices, vol. 27, no. 2, pp. 380-387 (1980)
[16] Leipold, L.; Baumgartner, W.; Ladenhauf, W.; Stengl, J.P. “A FET-Controlled Thyristor in SIPMOS Technology”, International Electron Devices Meeting, vol. 26, pp. 79-82 (1980)
[17] Tihanyi, J. “Functional Integration of Power MOS and Bipolar Devices” International Electron Devices Meeting, vol. 26, pp. 75-78 (1980)
[18] Benbahouche, L.; Merabet, A.; Zegadi, A. “A comprehensive analysis of failure mechaisms: latch up and second breakdown in IGBT (IXYS) and improvement”, Proceedings of the International Semiconductor Conference on microwave radar and wireless communications, vol. 1, pp. 190-192 (2012)
[19] Bauer, F.; Nistor, I.; Mihaila, A.; Antoniou, M.; Udrea, F. “SuperJunction IGBTS: An evolutionary step of silicon power devices with high impact potential”, Proceedings of the International 35th International Semiconductor Conference, pp. 27-36 (2012)
[20] Tee, E.K.C.; Antoniou, M.; Udrea, F.; Holke, A.; Pilkington, S.J.; Pal, D.K.; Yew, N.L.; Abidin, W.A.B.W.Z. “200 V Superjunction N-Type Lateral Insulated-Gate Bipolar Transistor With Improved Latch-Up Characteristics”, IEEE Transactions on Electron Devices, vol. 60, pp. 1412 - 1415 (2013)
[21] Bauer, F. “Superjunction IGBT Filling the Gap Between SJ MOSFET and Ultrafast IGBT”, IEEE Electron Device Letters, vol. 33, pp. 1288-1290 (2012)
[22] Knoch, J. “Optimizing Tunnel FET performance: Impact of device structure, transistor dimensions and choice of material”, International Symposium on VLSI Technology, Systems, and Applications, VLSI-TSA, pp. 46-46 (2009).
[23] Woo-Young Choi “Comparative Study of Tunneling Field-Effect Transistors”, Japanese Journal of Applied Physics, vol. 49, no. 4, pp. 04DJ12-1-04DJ12-3 (2010)
[24] Aswathy, M.; Biju, N.M.; Komaragiri, R. “Simulation Studies of Tunnel Field Effect Transistor (TFET)”, Proceedings of the International Conference on Advances in Computing, Communications and Informatics, ICACCI (2012)
[25] Seabaugh, A. “The Tunneling Transistor”, IEEE Spectrum, vol. 50, no. 10, pp. 35-62 (2013)
[26] Hao Lu; Seabaugh, A. “Tunnel Field-Effect Transistors: State-of-the-Art”, IEEE Journal of the Electron Devices Society, vol. 2, no. 4, pp. 44-49 (2014)
[27] Benbahouche, L.; Merabet, A.; Zegadi, A. “A comprehensive analysis of failure mechanisms: Latch up and secondbreakdown in IGBT(IXYS) and improvement” Proceedings of the International Conference on Microwave Radar and Wireless Communications, vol. 1, pp. 190-192 (2012)
[28] Bryant, A.; Shaoyong Y.; Mawby, P.; Dawei X.; Ran, L.; Tavner, P. “Investigation Into IGBT dV/dt During Turn-Off and Its Temperature Dependence” IEEE Transactions on Power Electronics, vol. 26, no. 10, pp. 3019-3031 (2011)
[29] Lovshenko, I.; Nelayev, V.; Shvedov, S.; Solodukha, V.; Turtsevich, A. “IGBT on SOI. Technology and Construction investigation” East-West Design & Test symposium, pp. 1-4 (2013)

QR CODE