簡易檢索 / 詳目顯示

研究生: 蔡侑文
YU-WEN TASI
論文名稱: 微型曲樑之臨界電壓的解析解
Analytical Solutions to the Threshold Voltage of Micro Curled Beams
指導教授: 胡毓忠
Y. C. Hu
黃世欽
Shyh-Chin Huang
口試委員: 趙振綱
Ching-Kong Chao
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 64
中文關鍵詞: 吸附電壓降階全階微機電
外文關鍵詞: reduce order, full order, pull-in voltage, MEMS
相關次數: 點閱:219下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因微結構與靜電場的耦合(coupling)效應、靜電力的非線性、雜散電場(fringe field)、及微結構因殘留應力及應力梯度所產生的預變形(pre-deformation)等,使得靜電式元件的分析相當複雜而不易求解。本研究目的即在探討具預變形之微結構在承受靜電力作用下的吸附現象,建立一高精確度的解析模型,求得臨界電壓的近似解析解(approximate analytical solutions)。
    本研究之方法乃先推導出微型曲樑承受靜電負載之彎曲應變能與電位能,得到具非線性靜電項之總能量函式,基於微小變形之假設,將非線性靜電項以泰勒級數展開(Taylor series expansion),並分別忽略四次及五次以上之高次項,得到三階(3-order)與四階(4-order)之低度非線性(weak nonlinear)能量式;繼之以能量的觀念利用雷利-立茲法與假設模態法,並採用樑的第一個固有模態(natural mode)做為曲樑的假設撓曲函數,來求得曲樑之臨界電壓的近似解析解,並比較全階模型(full-order)、三階模型、及四階模型所得結果的差異。經與文獻相比較,發現本研究所建立的解析模型與解析解相當接近實際。續比較五種常見的假設撓曲函數對分析結果的影響,包括:固有模態函數、均佈負載撓曲函數、集中負載撓曲函數、複合型負載撓曲函數、及二次函數等。數值結果顯示,不論是全階模型或降階模型(三階與四階),以結構之固有模態為假設撓曲函數均可得到最接近實驗值的結果,其中全階模型最大誤差約在8%以內,四階模型最大誤差則約在9%以內,三階模型最大誤差約在18%以內,而文獻中所提出之曲樑模型與實驗量測值誤差甚大,其最大誤差約為37%。


    The analytical modeling of the electrostatic devices is quite complicated and difficult in virtue of the electric-mechanical coupling effect, the nonlinearity of the electrostatic force, the fringe field, and the pre-deformation of the micro-structure caused by the residual stress and stress gradient. This thesis is to investigate the pull-in phenomenon of the pre-deformed microstructures subjected to electrostatic loads. High precision analytical modeling of the threshold voltage is established in this thesis.
    First of all, we use energy method to drive out the bending strain energy and electrical potential energy of the micro curled beam subjected to electrostatic loads. Based on the assumption of small deflection and adopting the Taylor series expansion, the expression of the total potential energy can be simplified as third-order and fourth-order models by omitting the terms with higher order than the third-order and the fourth-order respectively. Continuously, by the use of Rayleigh-Ritz method and assumed mode method, the approximate analytical solutions of the threshold voltage of curled beams are obtained based on the full-order, the third-order, and the fourth-order models respectively. The results obtained by this work agree more well to the experimental results compared to the published works. Five common used assumed deflection shape functions, including the natural mode, the uniform load deflection function, the concentrated load deflection function, the combined loads deflection function, and the square function are also compared with each other. The natural mode is verified to be the best choice. The numerical results show that the greatest error of the full-order model is below 8%, the one of the fourth-order model is below 9%, the one of the third-order model is below 18%, and the one of the literature is below 37%.

    摘要I ABSTRACTII 誌謝III 目錄IV 圖表索引VI 第一章 緒論1 1.1前言1 1.2研究動機2 1.3文獻回顧3 1.4研究目標16 1.5本文架構17 第二章 能量方程式19 2.1全階模型 (Full-Order Model)19 2.2降階模型 (Reduced-Order Model)24 2.2.1三階模型 (Third-Order Model)24 2.2.2四階模型 (Fourth-Order Model)26 第三章 吸附電壓27 3.1能量法 (Energy Method)27 3.2全階模型之臨界電壓29 3.3降階模型之臨界電壓33 3.3.1三階模型之臨界電壓33 3.3.2四階模型之臨界電壓36 第四章 假設模態函數41 4.1假設模態函數41 4.1.1懸臂樑函數 (Beam Function)41 4.1.2均佈負載 (Uniform Load)撓曲函數42 4.1.3集中負載 (Concentrated Load)撓曲函數42 4.1.4複合型負載 (Combined Load)撓曲函數42 4.1.5二次函數 (Square Function)43 4.2數值結果與討論44 第五章 結論與未來可行方向51 5.1結論52 5.2未來可行方向53 參考文獻55 附錄 A61 符號說明62 作者簡介64

    [1]W. Fang and J. A. Wickert, “Determining mean and gradient residual stress in thin films using micromachined cantilevers,” Journal of Micromechanics and Microengineering, Vol. 6, No. 3, Sep., pp. 301-309 (1996).
    [2]R. T. Chen, H. Nguyen and M. C. Wu, “A low voltage micromachined optical switch by stress-induced bending,” IEEE Int. Conf. on Micro Electro Mechanical System, pp. 424-428 (1999).
    [3]H. H. Lin, C. H. Chu, C. L. Chang and P. Z. Chang, “Mechanical Behavior of RF MEMS,” Second International Symposium on Acoustic Wave Devices for Future Mobile Communication Systems, Chiba University, Japan, pp. 121-125 (2004).
    [4]R. K. Gupta and S. D. Senturia, “Pull-in time dynamics as a measure of absolute pressure,” Tenth IEEE International Workshop on MEMS 1997, Nagoya, JAPAN, Jan., pp. 290-294 (1997).
    [5]K. Y. Park, C. W. Lee, H. S. Jang, Y. S. Oh and B. J. Ha, “Capacitive sensing type surface micromachined silicon accelerometer with a stiffness tuning capability,” ASME Microelectromechanical Systems, Heidelberg, Germany, Jan., pp. 637-642 (1998).
    [6]J. Bernstein, S. Cho, A. T. King, A. Kourepenis, P. Maciel and M. Weinberg, “A micromachined comb-drive tuning fork rate gyroscope,” Digest IEEE/ASME MEMS Workshop, Ft. Lauderdale, FL, Feb., pp. 143-148 (1993).
    [7]R. Sattler, P. Voigt, H. Pradelm and G. Wachutka, “Innovative design and modeling of a micromechanical relay with electrostatic actuation,” Journal of Micromechanics and Microengineering, Vol. 11, No. 4, pp. 428-433 (2001).
    [8]W. C. Tang, T.-C.H. Nguyen and R. T. Heow, “Laterally driven polysilicon resonant microstructures,” Proceeding of the IEEE MEMS’89 Workshop, Salt Lake City, Ut, Feb., pp. 53-59 (1989).
    [9]K. E. Petersen, “Dynamic micromechanics on silicon: techniques and devices,” IEEE Transactions on Electro Devices, Vol. ED-25, No. 10, Oct., pp. 1241-1250 (1978).
    [10]M. W. Judy, Y. H. Ho, R. T. Howe and A. P. Pisano, “Self-adjusting microstructures (SAMS),” Proceeding of the IEEE MEMS’91 Workshop, Nara, Japan, February, pp. 51-56 (1991).
    [11]C. L. Tsai and A. K. Henning, “Out-of-plane micro structures using stress engineering of thin films,” Proceedings of SPIE - The International Society for Optical Engineering, Vol. 2639, pp. 124-132 (1995).
    [12]C. L. Tsai and A. K. Henning, “Surface micromachined turbines,” Int. Conf. on Solid-State Sensors and Actuators, Vol. 2, Jun. pp. 829-832 (1997).
    [13]R. Legtenberg, J. Gilbert, S. D. Senturia, and M. Elwenspoek, “Electrostatic curved electrode actuators,” Journal of Microelectromechanical Systems, Vol. 6, No. 3, Sep., pp. 257-265 (1997).
    [14]R. K. Gupta, “Electrostatic pull-in test structure design for in-situ mechanical property measurements of microelectromechanical system (MEMS),” Ph.D. thesis, MIT (1997).
    [15]Jerwei Hsieh, and Weileun Fang, “A Novel microelectristatic torsional actuator,” Sensors and Actuators A, Vol. 79, pp.64-70 (2000).
    [16]Cheah Wei Leow, A. B. Mohammad and N. M. Kassim, “Analytical modeling for determination of pull-in voltage for an electrostatic actuated mems cantilever beam,”, ICSE Proceedings IEEE Int. Conf. on Semiconductor Electronics, 19-21 Dec., pp.233-238 (2002).
    [17]J. Chen, Sung-Mo Kang, J. Zou, C. Liu and J. E. Schutt-Aine, “Reduced-order modeling of weakly nonlinear MEMS devices with Taylor-series expansion and Arnoldi approach,” Journal of Micromechanics and Microengineering, Vol. 13, No. 3, pp. 441-451 (2004).
    [18]S. Chowdhury, M. Ahmadi and W. C. Miller ,”A closed-form model for the pull-in voltage of electrostatically actuated cantilever beams,” Journal of Micromechanics and Microengineering, Vol. 15, No. 4, pp. 756-763 (2005).
    [19]K. E. Petersen and C. R. Guarnieri, “Young’s modulus measurements of thin films using micromechanics,” Journal of Applied Physic, Vol. 50, No. 11, pp. 6761-6766 (1979).
    [20]K. Najafi and K. Suzuki, “A Novel Technique and Structure for the Measurement of Intrinsic Stress and Young's Modulus of Thin Films,” Proceeding of the IEEE MEMS, Salk Lake City, UT, Feb., pp. 96-97 (1989).
    [21]Q. Zou, Z. Li and L. Liu, “New methods for measuring mechanical properties of thin films in micromachining: beam pull-in voltage (Vpi) method and long beam deflection (LBD) method,” Sensors and Actuators A, 48, pp. 137-143 (1995).
    [22]J. J. Vlassak and W. D. Nix, “A new bulge test technique for the determination of Young’s modulus and Poisson’s ratio of thin films,” Journal of Materials Research, Vol. 7, No. 12, pp. 3242-3249 (1992).
    [23]P. M. Osterberg and S. D. Senturia, “M-test: a test chip for MEMS material property measurement using electrostatically actuated test structures,” Journal of Microelectromechanical Systems, Vol. 6, No. 2, June, pp. 107-118 (1997).
    [24]T. Tsuchiya, O. Tabata, J Sakata and Y. Taga, “Specimen size effect on tensile strength of surface-micromachined polycrystalline silicon thin films,” Journal of Microelectromechanical Systems, Vol. 7, No. 1, pp. 106-113 (1998).
    [25]C. Serre, P. Gorostiza, A. Perez-Rodriguez, F. Sanz and J.R. Morante, “Measurement of micromechanical properties of polysilicon micro- structures with an atomic force microscope,” Sensors and Actuators A, Vol. 57, pp. 215-219 (1998).
    [26]C. Serre, A. Perez, J. Morante, P. Gorostiza and J. Esteve, “Determination of micromechanical properties of thin films by beam bending measurements with an atomic force microscope,” Sensors and Actuators A, Vol. 74, pp. 134-138 (1999).
    [27]E. K. Chan, “Characterization and modeling of electrostatically actuated polysilicon micromechanical devices,” Ph. D. thesis, Stanford University (1999).
    [28]Y. Hirai, Y. Marushima, K. Nishikawa and Y. Tanaka “Young’s modulus evaluation of Si thin film fabricated by compatible process with Si MEMS’s,” International Microprocesses and Nanotechnology Conference, 11-13, July, pp. 82-83 (2000).
    [29]Y. C. Hu, C. M. Chang and S. C. Huang, “Some design considerations on the electrostatically actuated microstructures,” Sensors and Actuators A, Vol. 112, pp. 155-161 (2004).
    [30]P. Osterberg, H. Yie, X. Cai, J. White and S. Senturia, “Self-consistent simulation and modeling of electrostatically deformed diaphragms,” Proceedings of the IEEE MEMS ’94 Workshop, Oiso, Japan, pp. 28-32 (1994).
    [31]J. R. Gilbert, P. M. Osterberg, R. M. Harris, D. O. Ouma, X. Cai and A. Pfajfer, “Implementation of a MEMCAD system for electrostatic and mechanical analysis of complex structures from mask descriptions,” Proceedings of the IEEE MEMS ’93 Workshop, Ft. Lauderdale, FLA, Feb., pp. 207-212 (1993).
    [32]H. A. C. Tilmans , “Micro-mechanical Sensors Using Encapsulate Built-in Resonant Strain Gauges,” Ph.D. Dissertation, MESA Research Institute, University Twente, Enschede, The Netherlands (1993).
    [33]F. Maseeh, M. A. Schmidt, M. G. Allen, and S. D. Senturia, “Calibrated Measurements of Elastic Limit, Modulus, and the Residual Stress of Thin Films Using Micromachined Suspended Structures,” IEEE Solid State Sensor and Actuator Workshop, Hilton Head Island, SC, June 6-9, pp. 84-87 (1998).
    [34]S. Wang, S. Crary, and K. Najafi, “Electronic Determination of the Modulus of Elasticity and Intrinsic Stress of Thin Films Using Capacitive Bridges,” Mat. Res. Soc. Symp. Proc., pp. 203-208 (1992).
    [35]J. A. Schweitz, “Mechanical Characterization of Thin Films by Micromechanical Techniques,” MRS Bull., pp. 34-45, July (1992).
    [36]M. G. Allen, M. Mehregany, R. T. Howe, and S. D. Senturia, “Microfabricated Structures for the In-situ Measurement of residual Stress, Young’s Modulus, and Ultimate Strain of Thin Films,” Applied Physics Letter, Vol. 51, pp. 241-243 (1987).
    [37]周逸曼, “微結構靜電負載之探討,” 國立清華大學動力機械工程研究所碩士學位論文 (2000).
    [38]張接明, “靜電驅動微結構體之動態與穩定性分析,” 國立台灣科技大學機械工程系碩士學位論文 (2002).
    [39]王永祥, “承受靜電力之微型板的穩定性分析,” 國立台灣科技大學機械工程系碩士學位論文 (2003).
    [40]蔡欣昌, “利用微機械結構萃取薄膜材料機械性質,” 國立清華大學動力機械工程研究所博士學位論文 (2003).
    [41]劉維虔, “利用共振方法量測薄膜的楊氏係數和蒲松比,” 國立中興大學機械工程學碩士學位論文 (2004).
    [42]方維倫, “微機械製造結構於薄膜殘餘應力量測之應用,” 科儀新知, 第十八卷, 第三期, Dec., pp. 68-82 (1996).

    QR CODE