簡易檢索 / 詳目顯示

研究生: 張庭豐
Ting-Feng Chang
論文名稱: 以 RAFT活自由基溶液聚合法合成高分子接枝之氧化石墨烯及熱脫層氧化石墨烯及探討其對乙烯基酯樹脂之聚合固化樣品微觀型態結構、體積收縮、機械性質、熱傳導及導電性質的影響
Synthesis of polymer-grafted graphene oxide and thermally reduced graphene oxide by RAFT free radical solution polymerizations, and their effects on volume shrinkage, mechanical properties, and thermal and electrical conductivities for vinyl ester resins
指導教授: 黃延吉
Yan-Jyi Huang
口試委員: 邱文英
WUN-YING CIOU
陳崇賢
CHONG-SIAN CHEN
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 203
中文關鍵詞: 高分子接枝之氧化石墨烯抗收縮劑增韌劑可逆加成-斷裂鏈轉移聚合法乙烯基酯樹脂氧化石墨烯熱還原氧化石墨烯聚合固化體積收縮機械性質熱傳導性質導電性質
外文關鍵詞: graphite oxide, thermal reduced graphite oxide
相關次數: 點閱:405下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文探討用作熱固性樹脂抗收縮劑及增韌劑之具核殼型結構(CSS)高分子接枝之熱還原氧化石墨烯的合成,其對低收縮乙烯基酯樹脂在聚合固化後之樣品微觀型態結構、體積收縮特性、機械性質及導熱導電的影響。

這些核殼型結構(CSS),以TRGO-polymer標示之,係以氧化石墨烯(GO)經由熱還原形成之熱還原氧化石墨烯(TRGO)為核心及有機高分子為外殼,以Z支撐的可逆加成-斷裂鏈轉移聚合法(RAFT),利用S-Benzyl S'-trimethoxysilylpropyl trithiocarbonate (BTPT)作為可偶合的RAFT鏈轉移試劑合成而得。其中,氧化石墨烯(GO)是以modified Hummers 方法將天然石墨氧化合成。熱還原氧化石墨烯(TRGO)則是將氧化石墨烯放入高溫爐中,在1050℃下,以熱還原法製備而得。TRGO -polymer核殼型結構的高分子外殼為丙烯酸甲酯(MA)與甲基丙烯酸環丙氧烷酯(GMA)的共聚合物(poly(MA-co-GMA))、及聚丙烯酸丁酯(BA)與丙烯酸甲酯(MA)及甲基丙烯酸環丙氧烷酯(GMA)的共聚合物之團聯共聚合物(PBA-b-poly(MA-co-GMA))。

BTPT、GO、TRGO及TRGO-Polymer的結構,吾人以FTIR、1H-NMR、GPC、TGA及XRD鑑定之。本文中,吾人亦探討TRGO-Polymer對苯乙烯(St)/乙烯基酯(VER)/TRGO-Polymer之三成分系統於120℃恆溫聚合固化後之微觀型態結構(以SEM、TEM鑑定)、體積收縮、機械性質、導熱及導電性質。


Synthesis of polymer grafted graphene oxide with core-shell structure (CSS) as low-profile additives (LPA) and tougheners for thermoset resins, and their effects on the cured sample morphology, volume shrinkage characteristics and mechanical properties and thermal and electrical conductivities for low-shrink vinyl ester resins (VER) during the cure were investigated.

These CSS designated as TRGO-polymer, which contained thermal reduced graphene oxide(TRGO) as the core and organic polymer as the shell, were synthesized by the Z supported reversible addition-fragmentation chain transfer (RAFT) graft polymerization using S-Benzyl S'-trimethoxysilyl propyl trithio-carbonate (BTPT) as the coupable RAFT chain transfer agent (CTA). The graphene oxide (GO) was synthesized from natural graphite powder by a modified Hummers method. Thermal reduced graphene oxide (TRGO) was obtained by placing the graphene oxide in a high temperature furnace at 1050 ° C by a thermal reduction method.The grafted polymer as the shell structure of the TRGO-polymer was made from copolymer of MA and glycidyl methacrylate (poly(MA-co-GMA)), and poly(butylacrylate)-block- poly(methylacrylate-co-glycidyl methacrylate) (PBA-block-poly(MA-co-GMA)).

Structure characterizations of BTPT, GO, TRGO,and TRGO-polymer have been performed by using FTIR, 1H-NMR, 13C-NMR, GPC, TGA and XRD. In this work, the effects of TRGO-polymer on the volume shrinkage characteristics and mechanical properties and thermal and electrical conductivities of the styrene(St)/ vinyl ester(VER)/ TRGO-polymer ternary systems during the cure have also been explored.

摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VIII 表目錄 XIII 第一章 緒論 1 1.1 石墨烯 1 1.2 高分子複合材料 5 1.4環氧樹脂 (Epoxy Resin ) 6 1.5乙烯基酯樹脂 (Vinyl Ester Resin, VER) 9 1.6抗收縮劑 (Low Profile Additive, LPA) 10 1.7增韌劑 11 1.8研究範疇 12 第二章 文獻回顧 13 2.1石墨烯/高分子奈米複合材料之研究 13 2.2 氧化石墨烯(GO)及熱還原氧化石墨(TRGO)的製備 16 2.3 自由基聚合法 17 2.4溶液聚合法 (Solution Polymerization) 20 2.5活性自由基聚合法(living polymerization) 21 2.5.1原子轉移自由基聚合法 (ATRP) 22 2.5.2穩定自由基聚合法 (SFRP) 24 2.5.3 可逆加成-斷裂鏈轉移聚合法 (RAFT) 25 2.6不飽和聚酯與苯乙烯之交聯共聚合反應 27 2.7不飽聚酯(UP)樹脂之聚合固化後微觀結構之研究 30 2.8不飽和聚酯(UP)樹脂之抗收縮補償機制 31 2.9抗收縮劑對 UP 樹脂固化後體積收縮影響之研究 33 2.10不飽和聚酯(UP)硬化後的機械性質研究 34 2.11以RAFT聚合法合成高分子接枝之氧化石墨烯 36 第三章 實驗方法與設備 37 3.1 實驗藥品 37 3.1.1 乙烯基酯樹脂 37 3.1.2實驗藥品 40 3.2 實驗儀器 44 3.2.1 傅立葉轉換紅外線光譜儀 (FTIR) 44 3.2.2 凝膠滲透層析儀 (GPC) 45 3.2.3 核磁共振光譜儀 (NMR) 47 3.2.4 熱重分析儀 (TGA) 48 3.2.5 廣角度X光繞射儀 (XRD) 49 3.2.6 電子比重計 (ED) 50 3.2.7 高溫爐 51 3.2.8 掃描式電子顯微鏡(SEM) 52 3.2.9 穿透式電子顯微鏡(TEM) 53 3.2.10耐衝擊測試機 55 3.2.11萬用材料試驗機 56 3.2.12小型超音波洗淨機 57 3.2.13直流攪拌器 57 3.2.14真空減壓迴旋濃縮機 58 3.2.15 水流抽氣幫浦 58 3.2.16 熱傳導分析儀 59 3.2.17 導電分析儀 60 3.3 實驗方法 61 3.3.1 氧化石墨之製備 61 3.3.2熱脫層氧化石墨烯(TRGO)之製備 62 3.3.3 鏈轉移試劑S -Benzyl S'-trimethoxysilyl propyl trithiocarbonate (BTPT)之合成 63 3.3.4 熱還原氧化石墨烯接枝聚合物 (TRGO-Polymer)之合成 65 3.3.4.4胺解斷鏈接枝聚合物鏈 70 第四章 結果與討論 73 4.1 氧化石墨烯(GO)及熱還原氧化石墨烯(TRGO)之鑑定 73 4.1.1 氧化石墨烯(GO) 之FTIR鑑定 73 4.1.2 氧化石墨烯(GO)與熱還原氧化石墨烯(TRGO) 之TGA鑑定 75 4.2 鏈轉移劑S-Benzyl S'-trimethoxy silylpropyl trithiocarbonate (BTPT)之合成 77 4.2.1探討鏈轉移劑(BTPT)實驗步驟 77 4.2.4鏈轉移試劑(BTPT) 之NMR鑑定 78 4.3 大分子的鏈轉移試劑(macro-RAFT agent of BTPT-P(MA-co-GMA))之鑑定 83 4.3.1 大分子的鏈轉移試劑(BTPT-P(MA-co-GMA))之NMR鑑定 83 4.3.2 大分子的鏈轉移試劑(BTPT-P(MA-co-GMA))之GPC鑑定 90 4.4 接枝嵌段高分子之熱還原氧化石墨烯 (TRGO-Polymer) 之合成與分析 93 4.4.1 溶液中自由相高分子(free polymer)之NMR鑑定 94 4.4.2 溶液中自由相高分子(free polymer)、固相接枝高分子(grafted polymer)之GPC鑑定 99 4.4.3 接枝高分子之熱還原氧化石墨(TRGO-polymer)之TGA鑑定 104 4.4.4 接枝高分子之熱還原氧化石墨烯 (TRGO-Polymer) 之XRD鑑定 110 4.5體積收縮特性 117 4.5.1 St/VER(n=2)雙成分系統不同莫耳比之體積收縮特性 117 4.5.2 St/VER(n=2)/GO三成分系統固化後之體積收縮特性 119 4.5.3 St/VER(n=2)/TRGO三成分系統固化後之體積收縮特性 122 4.5.4 St/VER(n=2)/TRGO-PBA-b-P(MA-co-GMA10)三成分系統固化後之體積收縮特性 125 4.6 SEM微觀型結構 131 4.6.1 St/VER(n=2)雙成分系統 131 4.6.2 St/VER(n=2)/GO三成分系統 133 4.6.3 St/VER(n=2)/TRGO三成分系統 136 4.6.4 St/VER(n=2)/TRGO-PBA-b-P(MA-co-GMA10)三成分系統 139 4.6.5 St/VER(n=2)/TRGO-PBA-b-P(MA-co-GMA20)三成分系統 142 4.7 機械性質分析 145 4.7.1 耐衝擊強度測試 145 4.7.1.1 St/VER(n=2)/GO三成分系統 145 4.7.1.2 St/VER(n=2)/TRGO三成分系統 147 4.7.1.3 St/VER(n=2)/TRGO-PBA-b-P(MA-co-GMA10)三成分系統 149 4.7.1.4 St/VER(n=2)/TRGO-PBA-b-P(MA-co-GMA20)三成分系統 151 4.7.2 拉力測試 154 4.7.2.1 St/VER(n=2)/GO三成分系統 154 4.7.2.2 St/VER(n=2)/TRGO三成分系統 158 4.7.2.3 St/VER(n=2)/TRGO-PBA-b-P(MA-co-GMA10) 三成分系統 162 4.7.2.4 St/VER(n=2)/TRGO-PBA-b-P(MA-co-GMA20) 三成分系統 166 4.8 導熱導電特性 173 4.8.1 導熱性質測定 173 4.8.2 導電性質測定 177 第五章 結論 180 第六章 建議之未來工作 182 第七章 參考文獻 183

[1] H. Kim, A. A. Abdala, C. W. Macosko, Macromolecules 2010, 43, 6515.
[2] M. Eizenberg; J. M. Blakely, Surf. Sci. 1970, 82, 228–236.
[3] K.S.Novoselov;A.K.Geim;S.V.Morozov;D.Jiang;Y.Zhang;S.V.Dubonos;I. V.Grigorieva,; A. A.Firsov, Science 2004, 306, 666–669.
[4] K.Hu,D.D.Kulkarni,I.Choi,Vladimir V.Tsukruk. Progress in Polymer Science. 2014,39,1934
[5] R. B. Burns, "Polyester molding compounds", Marcel Dekker, New York, 1982
[6] The B.F. Goodriche Co, WO93/21274, Oct. 28.1993.
[7] E. Martuscelli, P. Musto, G. Ragosta, G. Scarinzi, E. Bertotti, Journal of Polymer Science Part B: Polymer Physics 1993, 31, 619.
[8] S. B. Pandit, V. M. Nadkarni, Industrial & Engineering Chemistry Research 1994, 33, 2778.
[9] D. S. Kim, K. Cho, J. H. An, C. E. Park, Journal of Materials Science 1994, 29, 1854.
[10] J. S. Ullett, R. P. Chartoff, Polymer Engineering & Science 1995, 35, 1086.
[11] M. Abbate, E. Martuscelli, P. Musto, G. Ragosta, G. Scarinzi, Journal of Applied Polymer Science 1995, 58, 1825.
[12] M. L. L. Maspoch, A. B. Martinez, Polymer Engineering & Science 1998, 38, 290.
[13] N. A. Miller, C. D. Stirling, Polym. Polym. Comps. 2001 , 9, 31.
[14] R. E. Young, in "Unsaturated Polyester Technology" ed. P.F. Bruins, Gordon and Breach Science Publishers, New York 1976.
[15] M. E. Kelly, in "Unsaturated Polyester Technology" ed. P.F. Bruins, Gordon and Breach Science Publishers, New York 1976, 370.
[16] F. Fekete, in "Unsaturated Polyester Technology" ed. P.F. Bruins, Gordon and Breach Science Publishers, New York 1976, 28.
[17] B. Ellis, "Chemistry and Technology of Epoxy Resins", London: Blackie Academic and Professional 1993.
[18] 陳東課, 環氧樹脂在基層板之應用, 化工技術第四卷第五期, 1996.
[19] 賴耿陽, 環氧樹脂應用實務, 復漢出版社, 台灣, 1999.
[20] 賴家聲, 環氧樹脂與硬化劑(上), 復漢出版社, 台灣, 1999.
[21] S. V. Levchik, G. Camino, M. P. Luda, L. Costa, G. Muller, B. Costes, Polymer degradation and stability 1998, 60, 169.
[22] 黃滄閔,碩士論文,國立成功大學,2001.
[23] Y. J. Huang, C. M. Liang, Polymer 1996, 37, 401.
[24] T. Mitani, H. Shiraishi, K. Honda, G. E. Owen, 44th Annual Conference Composite Institute, the Society of the Plastics Industry, session RF (Reb3-9) 1989.
[25] W. Li, L. J. Lee, Polymer 1998, 39, 5677.
[26] M. Kinkelaar, S. Muzumdar, L. J. Lee, Polymer Engineering & Science 1995, 35, 823.
[27] R. R. Hill, S. V. Muzumdar, L. J. Lee, Polymer Engineering & Science 1995, 35, 852.
[28] W. Crc for Polymers Pty. Ltd., WO97,43339 Nov 20,1997.
[29] J. Chiefari, Y. K. Chong, F. Ercole, J. Krstina, J. Jeffery, T. P. T. Le, R. T. A. Mayadunne, G. F. Meijs, C. L. Moad, G. Moad, Macromolecules 1998, 31, 5559.
[30] G. M. T. P. Le, S. H. T. E. Rizzardo, PCT Int. Appl. WO9801478 A1980115 1998.
[31] D. J. Keddie, G. Moad, E. Rizzardo, S. H. Thang, Macromolecules 2012, 45, 5321.
[32] Y. Zhao and S. Perrier," Macromolecules, 2007, 40, 9116-9124.
[33] H. Kim, Y. Miura, C. W. Macosko, Chemistry of Materials 2010, 22, 3441.
[34] H. Kim, C. W. Macosko, Macromolecules 2008, 41, 3317.
[35] W. Huang, X. Ouyang, L. J. Lee, ACS Nano, 6, 10178, 2012.
[36] J. Z. Xu, C. Chen, Y. Wang, H. Tang, Z. M. Li, B. S. Hsiao, Macromolecules, 2011, 44, 2808.
[37] J.R.Potts, O.Shankar, L. Du, and R.S. Ruoff, Macromolecules 2012, 45, 6045.
[38] S. Wang, M. Tambraparni, J. Qiu, J. Tipton, D. Dean, Macromolecules, 2009, 42, 5251.
[39] S. Ganguli, A. K. Roy, D. P. Anderson, Carbon 2008, 46, 806.
[40] M. Martin-Gallego, R. Verdejo, M. A. Lopez-Manchado, M. Sangermano, Polymer 2011, 52, 4664.
[41] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, Carbon 2007, 45, 1558.
[42] S.Stankovich; D. A.Dikin; G. H. B.Dommett; K. M.Kohlhaas; E. J.Zimney; E. A. Stach; R. D.Piner; S. T.Nguyen; R. S.Ruoff, Nature 2006, 442, 282–286.
[43] P.Steurer; R.Wissert; R.Thomann; R.Muelhaupt, Macromol. Rapid Commun. 2009, 30, 316–327.
[44] H.Kim; C. W.Macosko, Polymer 2009, 50, 3797–3809.
[45] H. Kim, Y. Miura, and C. W. Macosko, Chem. Mater. 2010, 22, 3441–3450 3441
[46] S.Ahmed, H.S.Wajid, A.Tanvir, S.D.F. Irin, F.Alan, M.J.Jankowski, Green, Macromol.Mater.Eng.2013,298,339–347
[47] W. S. Hummers, R. E. Offeman, J. Am. Chem. Soc., 1958, 80, 1339.
[48] H. C. Schniepp, J. L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson, R. K. Prud'homme, R. Car, D. A. Saville, I. A. Aksay, The Journal of Physical Chemistry B 2006, 110, 8535.
[49] Y. Yang, J. Wang, J. Zhang, J. Liu, X. Yang, H. Zhao, Langmuir 2009, 25, 11808
[50] F.Beckert,C.Friedrich, R.Thomann, R.Mulhaupt , Macromolecules 2012, 45, 1346
[51] 彭俊昇,碩士論文,國立台灣科技大學,2000.
[52] H. R. Allcock, F. W. Lampe, "Contemporary Polymer Chemistry, "2nd Ed." , Prentice-Hall, New Jersey, 1990, p.50.
[53] C.S.Brazel and S.L. Rosen, "Fundamental Principles of Polymeric Materials, 3rd Ed." Wiley, New York, 2012.
[54] 張容瑋,碩士論文,國立台灣科技大學, 2008.
[55] M. Szwarc, Nature, 178, 1168, London, 1956.
[56] T. Otsu, M. Yoshida, Makromol Chem Rapid Commun. 1982, 3, 127, 542.
[57] K. Matyjaszewski, J. Xia, Chemical Reviews 2001, 101, 2921.
[58] J. S. Wang, K. Matyjaszewski, Journal of the American Chemical Society 1995, 117, 5614.
[59] M. Kamigaito, T. Ando, M. Sawamoto, Chemical Reviews 2001, 101, 3689.
[60] D. H. Solomon, E. Rizzardo, P. Cacioli, US Patent, 4, 581, 429, 1985.
[61] M. K. Georges, R. P. N. Veregin, P. M. Kazmaier, G. K. Hamer, Macromolecules 1993, 26, 2987.
[62] R. Francis, D. Taton, J. L. Logan, P. Masse, Y. Gnanou, R. S. Duran, Macromolecules 2003, 36, 8253.
[63] P. Takolpuckdee, C. A. Mars, S. Perrier, Organic letters 2005, 7, 3449.
[64] 盧天智, 碩士論文,台灣科技大學, 1991
[65] Y. J. Huang, C. C. Su, J. Appl. Polym. Sci. 1995, 55, 305.
[66] Y. J. Huang, C.C. Su, Polym. 1994, 35, 2397.
[67] J.P. Dong, J.G. Huang, F.U. Lee, J.W. Roan, and Y.J. Huang, J. Appl. Polym. Sci. 2004, 91, 3369
[68] E. J. Bartkus, C. H Kroekel, Appl. Polym. Symp. 1970, 15, 113.
[69] V. A. Pattison, R. R. Hindersinn, W. T. Schwartz, J. Appl. Polym. Sci. 1974, 18, 2763.
[70] V. A. Pattison, R. R. Hindersinn, W. T. Schwartz, J. Appl. Polym. Sci. 1975, 19 3045.
[71] Y. J. Huang, T. S. Chen, J. G. Huang, F. H. Lee, J. Appl. Polym. Sci. 2003, 89, 3336
[72] K. E. Atkins, in “Sheet Molding Compound :Science and Technology” Ed., H.G. Kia, Hanser Publishers, 1993, Ch4.
[73] C. B. Bucknall, I. K. Partridge, M. J. Phillips, Polym. 1991, 32, 786.
[74] T. Mitani, H. Shiraishi, K. Honda, G.E. Owen, 44th Annual Conference Composite Institute, SPI, Session 12-F, 1989.
[75] Y. J. Huang, J. C. Horng, Polym. 1998, 39, 3683.
[76] W. D. Cook, O. Delatycki, J. Polym. Sci. Polym. Phys. Ed. 1974, 12, 2111.
[77] W. D. Cook, O. Delatycki, J. Polym. Sci. Polym. Phys. Ed. 1974, 12, 1925.
[78] J. P. Dong , J. H. Lee, D. H. Lai, Y. J. Huang, Appl. Polym. Sci. 2005, 98, 264
[79] Y. J. Huang, S. C. Lee, J. P. Dong, J. Appl. Polym. Sci. 2000, 78, 558.
[80] Y. J. Huang, T. S. Chen, J. G. Huang, F. H. Lee, J. Appl. Polym. Sci. 2003, 89, 3347.
[81] Y. Tsujii, M. Ejaz, K. Sato, A. Goto, T. Fukuda, Macromolecules 2001, 34, 8872.
[82] R. Narain, S. P. Armes, Macromolecules 2003, 36, 4675.
[83] Y. S. Yang, L. J. Lee, Polymer 1988, 29, 1793.
[84] K. Horie, I. Mita, H. Kambe, Journal of Polymer Science Part A: Polymer Chemistry 1969, 7, 2561.
[85] 江文慶,碩士論文,國立台灣科技大學,1996.
[86] Y. Zhao, and S. Perrier, Macromolecules 2006, 39, 8603.
[87] K. Jiang, C. Ye, P. Zhuang, X. Wang, and Y. Zhao, Macromolecules 2012, 45, 1346.
[88] 陳彥博,碩士論文,國立臺灣科技大學,2019
[89] 林暐靜,碩士論文,國立臺灣科技大學,2019
[90] 江義駿,碩士論文,國立臺灣科技大學,2018.
[91] 粘純嫣,碩士論文,國立臺灣科技大學,2017
[92] S.R. Wang, J. J. Qiu, Composites:Part B 41(2010)533-536
[93] L. Yusriah, S.M. Sapuan, E.S. Zainudin, M. Mariatti, M. Jawaid, POLYM.
COMPOS., 37:2008–2017, 2016.
[94] O. Eksik, S.F. Bartolucci, T. Gupta, H. Fard, T. Borca-Tasciuc, N. Koratkar, Carbon
101 (2016) 239-244.
[95] S. Ganguli, A.K. Roy, D.P. Anderson, Carbon 46 (2008) 806-817.

QR CODE