簡易檢索 / 詳目顯示

研究生: 黃珮荃
Pei-Chuan Huang
論文名稱: 具9,10-二呋喃蒽骨架衍生物之合成及其溶劑依賴性螢光加強效應之研究
Solvent-dependent fluorescence emission enhancement of 9,10-di(furan-2-yl)anthracene and its derivatives
指導教授: 何郡軒
Jinn-Hsuan Ho
口試委員: 鄭智嘉
Chih-Chia Cheng
許智偉
Chi-Wei Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 163
中文關鍵詞: 聚集誘導發光溶劑依賴性光物理
外文關鍵詞: Aggregation-induced emission, Solvent-dependent, Photophysics
相關次數: 點閱:202下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

蒽(Anthracene)為一重要的有機化合物分子,因其具有優異的光致發光性質,但是蒽不適合直接用作發光材料,因其π-π堆疊和結晶會導致量子產率降低,可以經由外圍官能基修飾改善此現象,並將其應用於光電器件、螢光傳感器、生物成像等領域。
本研究主要是以蒽為中心結構,利用鈴木偶合在9,10位置接上芳香環之一系列分子。合成之化合物分為四部分,分別為對稱雙取代蒽化合物、不對稱雙取代蒽化合物、單取代蒽化合物以及雙取代苯及萘化合物,並使用儀器測量分子的吸收光譜、螢光光譜、螢光量子產率及消光係數等光物理性質。
實驗結果發現第一部分中連接呋喃-2-基的化合物(FAF, BFABF, MFAMF)具有溶劑依賴性螢光增強效應,在正己烷、環己烷、正丁醚、甲苯下有明顯之螢光強度加強現象,例如FAF在上述溶劑中相較於在二氯甲烷螢光量子產率增強了56倍。第二、三、四部分中之化合物則不具有此溶劑依賴性螢光增強效應,表示這個現象只發生在9,10位置同時具有呋喃-2-基的蒽環為主體之化合物中。


Anthracene is an important organic compound because of its excellent photoluminescence properties. However, anthracene cannot be used directly due to its π-π stacking and crystallization, which will cause a decrease in its fluorescence quantum yield. To remedy this limitation, anthracene core can be fused with functional groups. Anthracene derivatives has been applied to photoelectric devices, fluorescent sensors, biological imaging and other fields.
The study was mainly based on anthracene, and we used Suzuki coupling to synthesize a series of anthracene derivatives with aromatic rings at 9,10 positions. These compounds were divided into four parts, including Symmetric disubstituted anthracene compounds, Asymmetric disubstituted anthracene compounds, Monosubstituted anthracene compounds, and disubstituted benzene and naphthalene compounds, respectively. We used instruments to measure the photophysical properties of molecules including absorption spectrum, fluorescence spectrum, fluorescence quantum yield and extinction coefficient.
The results found that the furan-2-yl decorated compounds (FAF, BFABF, MFAMF) in the first part have a solvent-dependent fluorescence enhancement effect. An obvious fluorescence intensity enhancement was observed in n-hexane, cyclohexane, di-butyl ether, toluene. For example, the fluorescence quantum yield of FAF in cyclohexane is increased by 56 times compared with that in dichloromethane. The compounds in the second, third, and fourth parts didn't have this solvent-dependent fluorescence enhancement effect, indicating that this phenomenon only occurred in compounds with an anthracene having a furan-2-yl derivatives at the 9,10 position.

摘要 I ABSTRACT II 目錄 IV 圖目錄 VII 表目錄 X 附錄 XI 第一章 緒論 1 第一節 前言 1 第二節 有機發光二極體(OLED)簡介 2 第三節 螢光探針(Fluorescence Probe)簡介 3 第四節 螢光增強文獻回顧 5 1-4-1. 螯合螢光增強效應 (CHEF) 5 1-4-2. 溫度依賴性螢光增強 8 1-4-3. 聚集誘導螢光增強 9 1-4-4. 呋喃衍生物螢光增強效應 11 第五節 研究動機及方法 15 第二章 實驗部分 16 第一節 實驗原理 16 2-1-1 Jablonski能階圖 16 2-1-2 鈴木偶合反應(Suzuki reaction) 18 2-1-3 螢光量子產率 20 第二節 實驗儀器 21 第三節 儀器原理 22 2-3-1. 核磁共振儀(Nuclear Magnetic Resonance Spectrometer): 22 2-3-2. 紫外光-可見光吸收儀(UV-Vis Spectrophtometer): 23 2-3-3. 螢光光譜儀(Fluorescence Spectrometer): 24 第四節 儀器測量方法 25 2-4-1. 吸收光譜量測方法 25 2-4-2. 螢光強度量測方法 26 2-4-3. 消光係數量測方法 27 2-4-4. 螢光量子產率量測方法 28 第五節 藥品及溶劑 29 第六節 實驗流程簡圖 31 2-6-1. 以9,10-蒽骨架為核心之合成路徑 31 2-6-2. 以9-蒽骨架為核心之合成路徑 31 2-6-3. 以1,4-萘骨架為核心之合成路徑 32 2-6-4. 以1,4-苯骨架為核心之合成路徑 32 第七節 化合物結構、分子式及分子量與命名 33 第八節 化合物合成步驟 36 第三章 結果與討論 49 第一節 各化合物於不同溶劑中光物理性質 49 3-1-1. FAF於不同溶劑中光物理性質 49 3-1-2. BFABF於不同溶劑中光物理性質 52 3-1-3. MFAMF於不同溶劑中光物理性質 55 3-1-4. 3FA3F於不同溶劑中光物理性質 58 3-1-5. FAP於不同溶劑中光物理性質 60 3-1-6. FAT於不同溶劑中光物理性質 62 3-1-7. PAT於不同溶劑中光物理性質 64 3-1-8. FA於不同溶劑中光物理性質 66 3-1-9. TA於不同溶劑中光物理性質 68 3-1-10. PA於不同溶劑中光物理性質 70 3-1-11. BFA於不同溶劑中光物理性質 72 3-1-12. FNF於不同溶劑中光物理性質 74 3-1-13. FBF於不同溶劑中光物理性質 76 第二節 各化合物於相同溶劑中光物理性質 78 3-2-1. 對稱雙邊呋喃蒽於二氯甲烷、環己烷中螢光光譜圖 78 3-2-2. 單取代蒽於二氯甲烷、環己烷、乙腈中螢光光譜圖 80 3-2-3. 不對稱雙取代蒽於二氯甲烷、環己烷中螢光光譜圖 82 3-2-4. 雙邊呋喃蒽、萘和苯於二氯甲烷、環己烷中螢光光譜圖 83 第三節 消光係數 84 第四節 螢光量子產率 85 第五節 各分子二面角平面化理論計算 87 第六節 不同濃度之FAF於正己烷之吸收螢光光譜圖 97 第七節 溶劑效應 98 第四章 結論 99 第五章 未來展望 100 第六章 參考文獻 101 附錄 105

1 Chen, S., Deng, L., Xie, J., Peng, L., Xie, L., Fan, Q., Huang, W., Recent developments in top-emitting organic light-emitting diodes. Adv Mater 2010, 22 (46), 5227-39.
2 Pope, M., Kallmann, H. P. & Magnante, P. Electroluminescence in Organic Crystals. The Journal of Chemical Physics 1963, 38, (8), 2042-2043.
3 Tang, C. W., VanSlyke, S. A., Chen, C. H., Electroluminescence of doped organic thin films. Journal of Applied Physics 1989, 65 (9), 3610-3616.
4 Kim, S.-K., Yang, B., Ma, Y., Lee, J.-H., Park, J.-W., Exceedingly efficient deep-blue electroluminescence from new anthracenes obtained using rational molecular design. Journal of Materials Chemistry 2008, 18 (28).
5 Grynkiewicz, G., Poenie, M. & TsienB, R. Y. A New Generation of Ca2+ Indicators with Greatly Improved fluorescenece properties. The Journal of Biological Chemistry 1984, 3440.
6 Erdemir, S., Kocyigit, O., Anthracene excimer-based "turn on" fluorescent sensor
for Cr(3+) and Fe(3+) ions: Its application to living cells. Talanta 2016, 158, 63-
69.
7 P, C. A. S., Shanmugapriya, J., Singaravadivel, S., Sivaraman, G., Chellappa, D., Anthracene-Based Highly Selective and Sensitive Fluorescent "Turn-on" Chemodosimeter for Hg(2+). ACS Omega 2018, 3 (10), 12341-12348.
8 Gostl, R., Sijbesma, R. P., pi-extended anthracenes as sensitive probes for mechanical stress. Chem Sci 2016, 7 (1), 370-375.
9 Burratti, L., Ciotta, E., Bolli, E., Kaciulis, S., Casalboni, M., De Matteis, F., Garzón-Manjón, A., Scheu, C., Pizzoferrato, R., Prosposito, P., Fluorescence enhancement induced by the interaction of silver nanoclusters with lead ions in water. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2019, 579.
10 Slassi, S., Aarjane, M., El-Ghayoury, A., Amine, A., A highly turn-on fluorescent CHEF-type chemosensor for selective detection of Cu(2+) in aqueous media. Spectrochim Acta A Mol Biomol Spectrosc 2019, 215, 348-353.
11 Li, S. Y., Hui, Y. J., Sun, Z. B., Zhao, C. H., A triarylborane-based biphenyl exhibiting abrupt fluorescence enhancement at a specific high temperature. Chem Commun (Camb) 2017, 53 (24), 3446-3449.
12 Cheng, J., Liang, X., Cao, Y., Guo, K. & Wong, W.-Y. Aldehyde end-capped terthiophene with aggregation-induced emission characteristics. Tetrahedron 2015, 71, (34), 5634-5639.
13 Hong, Y., Lam, J. W. & Tang, B. Z. Aggregation-induced emission: phenomenon, mechanism and applications. Chem Commun (Camb) 2009, (29), 4332-4353.
14 Hong, Y., Lam, J. W. Y. & Tang, B. Z. Aggregation-induced emission. Chem. Soc. Rev 2011.
15 Qin, W. et al. Construction of Efficient Deep Blue Aggregation-Induced Emission Luminogen from Triphenylethene for Nondoped Organic Light-Emitting Diodes. Chemistry of Materials 2015, 27, (11), 3892-3901.
16 Shen, X. Y. et al. Fumaronitrile-Based Fluorogen: Red to Near-Infrared Fluorescence, Aggregation-Induced Emission, Solvatochromism, and Twisted Intramolecular Charge Transfer. The Journal of Physical Chemistry C 2012, 116, (19), 10541-10547.
17 Zhang, X., Chi, Z., Zhang, J., Li, H., Xu, B., Li, X., Liu, S., Zhang, Y., Xu, J., Piezofluorochromic properties and mechanism of an aggregation-induced emission enhancement compound containing N-hexyl-phenothiazine and anthracene moieties. J Phys Chem B 2011, 115 (23), 7606-11.
18 Wang, R., Liang, Y., Liu, G., Pu, S., Aggregation-induced emission compounds based on 9,10-diheteroarylanthracene and their applications in cell imaging. RSC Advances 2020, 10 (4), 2170-2179.
19 Islam, M. M., Hu, Z., Wang, Q., Redshaw, C., Feng, X., Pyrene-based aggregation-induced emission luminogens and their applications. Materials Chemistry Frontiers 2019, 3 (5), 762-781.
20 Babu, E., Mareeswaran, P. M., Krishnan, M. M., Sathish, V., Thanasekaran, P., Rajagopal, S., Unravelling the aggregation induced emission enhancement in Tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(II) complex. Inorganic Chemistry Communications 2018, 98, 7-10.
21 Greco, N. J., Tor, Y., Furan Decorated Nucleoside Analogues as Fluorescent Probes: synthesis, photophysical evaluation and site-specific incorporation. Tetrahedron 2007, 63 (17), 3515-3527.
22 Grolleau, J., Petrov, R., Allain, M., Skene, W. G.; Frere, P., Solid-State Emission Enhancement via Molecular Engineering of Benzofuran Derivatives. ACS Omega 2018, 3 (12), 18542-18552.
23 Cordovilla, C., Bartolomé, C., Martínez-Ilarduya, J. M.; Espinet, P., The Stille Reaction, 38 Years Later. ACS Catalysis 2015, 5 (5), 3040-3053.
24 Mallet, C., Didane, Y., Watanabe, T., Yoshimoto, N., Allain, M., Videlot-Ackermann, C., Frère, P., Electronic Properties and Field-Effect Transistors of Oligomers End-Capped with Benzofuran Moieties. ChemPlusChem 2013, 78 (5), 459-466.
25 張智勝. 具溶劑依賴性之雙螢光放光有機分子合成及光物理研究. 國立臺灣科技大學, 臺北市, 2019.
26 Gray, V. et al. Photophysical characterization of the 9,10-disubstituted anthracene chromophore and its applications in triplet–triplet annihilation photon upconversion. Journal of Materials Chemistry C 2015, 3, (42), 11111-11121.
27 Noomnarm, U. & Clegg, R. M. Fluorescence lifetimes: fundamentals and interpretations. Photosynth Res 2009, 101, (2-3), 181-194.
28 Dong, J.-L., Wang, D.-Z., Jia, Y.-Y. & Wang, D.-H. Three coordination polymers based on 9,10-di(pyridine-4-yl)anthracene ligand: Syntheses, structures and fluorescent properties. Journal of Molecular Structure 2017, 1142, 304-310.
29 Gröger, H. Moderne Methoden der Suzuki-Kreuzkupplung Die langerwarteten universellen Synthesevarianten mit Arylchloriden. J. Prakt. Chem. 2000.
30 Kotha, S., Lahiri, K. & Kashinath, D. Recent applications of the Suzuki–Miyaura cross-coupling reaction in organic synthesis. Tetrahedron , 2002.
31 Suzuki, A. Recent advances in the cross-coupling reactions of organoboron derivatives with organic electrophiles, 1995–1998. Journal of Organometallic Chemistry , 1999.
32 Bovey, F. A., Nuclear Magnetic Resonance Spectroscopy 2nd Edition. 1988. ISBN: 0-12-119752-2.
33 Sommer, L., Analytical Absorption Spectrophotometry in the Visible and Ultraviolet, Volume 8 1st Edition. 1989. eBook ISBN: 9780444597458.
34 Lakowicz, J. R., Principles of Fluorescence Spectroscopy 3rd Edition. 2007. ISBN: 0-387-31278-1.
35 Ikbal, M. et al. Synthesis, Photophysical and Photochemical Properties of Photoacid Generators Based on N-Hydroxyanthracene-1,9-dicarboxyimide and Their Application toward Modification of Silicon Surfaces. The Journal of Organic Chemistry 2012, 10557−10567.
36 Ohta, A. et al. Effects of Alkoxy Substitution on the Optical Properties of 9,10-Anthraquinone and Anthracene: 2,3,6,7-Tetrapropoxy-substituted vs. 2,6-Dipropoxy-substituted Derivatives. Chemistry Letters 2012, 41, (7), 674-676.
37 Brouwer, A. M., Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report). Pure and Applied Chemistry 2011, 83 (12), 2213-2228.
38 Hornback, J. M., Organic Chemistry 2nd Edition. 2005. ISBN: 978-0534389512.
39 Hirayama, F. Intramolecular Excimer Formation. I. Diphenyl and Triphenyl Alkanes. The Journal of Chemical Physics 1965, 42, (9), 3163-3171.
40 Shakerizadeh-Shirazi, F., Hemmateenejad, B., Mehranpour, A. M., Determination of the empirical solvent polarity parameter ET(30) by multivariate image analysis. Anal. Methods 2013, 5 (4), 891-896.
41 Christian Reichardt, Empirical Parameters of Solvent Polarity as Linear Free-Energy Relationships. Angewandte Chemie 1975.

QR CODE