簡易檢索 / 詳目顯示

研究生: 陳又任
Yu-Jen Chen
論文名稱: CMOS注入鎖定四相位除二頻器之設計與雙共振RLC注入鎖定除頻器電壓調動之研究
A CMOS Quadrature Capacitive Cross-Coupled Injection-Locked Frequency Divider and Voltage Tuning Effect of Dual-Resonance RLC Injection-Locked Frequency Divider
指導教授: 張勝良
Sheng-Lyang Jang
口試委員: 徐敬文
Ching-Wen Hsue
黃進芳
Jhin-Fang Huang
賴文政
Wen Cheng Lai
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 132
中文關鍵詞: 壓控震盪器注入鎖定除頻器遲滯現象
外文關鍵詞: VCO, ILFD, tuning hysteresis
相關次數: 點閱:304下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本篇論文提出了三顆不同結構的注入鎖定除頻器,分別為三頻帶除二注入鎖定除頻器、單頻帶除四注入鎖定除頻器以及雙頻帶除二注入鎖定除頻器。
首先,第一顆晶片是使用台積電(TSMC) 0.18 um 製程來實現的四相位注入鎖定除二除頻器,這顆除頻器的設計方式是用交叉耦合(cross couple)的QVCO,並加上兩個NMOS注入。當驅動偏壓為 0.9 V時,功耗為7.434mW,以 0 dBm的注入強度當作輸入信號源,除頻範圍為 116.521% ,所對應到的注入頻率為 2.4 GHz到9.1 GHz 共 6.7 GHz。
第二顆晶片是一個雙頻帶注入鎖定除頻器,同樣使用台積電(TSMC) 0.18 um製程來實現,設計架構使用兩個串連電晶體做為注入,並包含一組RLC雙頻共振腔,其中使用了一組電阻來加寬除頻範圍,並研究調動電壓影響,並發現Vt曲線有遲滯現象,當在高注入強度時並不會影響除頻範圍。
最後,第三顆晶片為雙頻代除頻器之研究電壓調動,同樣使用台積電(TSMC) 0.18 um製程來實現,設計架構為雙共振的LC-tank所組成,並利用可變電容來使其電路切頻,量測的結果顯示,不同的Vt下會有不同的除頻範圍,而VT曲線發現有遲滯現象,但遲滯現象並不會影響除頻範圍。


First, a wide-locking range divide-by-2 quadrature injection-locked frequency divider (QILFD) with capacitive cross-coupled oscillator was designed and implemented. The ILFD consists of a quadrature voltage controlled oscillator (QVCO) and two NMOS switches, which are in parallel with the QVCO resonators for signal injection. The proposed CMOS QILFD has been implemented with the TSMC 0.18-μm CMOS technology and the core power consumption is 7.434mW at the supply voltage of 0.9V. The free-running frequency of the QILFD is tunable from 2.38 GHz to 2.48GHz. At the input power of 0dBm, the divide-by-2 locking range is 116.521% from 2.4 GHz to 9.1 GHz. The phase noise of the locked output spectrum is lower than that of free running QILFD in the 2 mode.
Secondly, this thesis studies the voltage tuning effect on a dual-resonance RLC injection locked frequency divider (ILFD) implemented in the TSMC 0.18 μm 1P6M CMOS process. The dual-resonance LC-tank consists of varactors in series with resistors and on-chip inductors. The resistor is used to enhance the locking range. The free-running oscillation frequency has one high-band and one low-band tuning range as the tuning voltage of varactor increases from 0V to 2V. Measured tuning range depends upon the direction of voltage tuning, the tuning range shows a hysteresis loop, which does not affect on the locking range of ILFD at high injection power.
Finally, this thesis studies the voltage tuning effect on a dual-resonance LC-tank injection locked frequency divider (ILFD). The dual-resonance LC-tank consists of varactors and on-chip inductors. The free-running oscillation frequency has one high-band and one low-band tuning range as the tuning voltage of varactor varies. Measurement results show that the tuning range depends upon the direction of voltage tuning, the tuning range shows a hysteresis loop, which does not affect on the locking range of ILFD.

摘要 I ABSTRACT III 誌謝 V CHAPTER1 INTRODUCTION 1 1.1 Research Background 1 1.2 Thesis Organization 5 CHAPTER2 OVERVIEW OF THE VOLTAGE-CONTROLLED OSCILLATORS 7 2.1 INTRODUCTION 7 2.2 Basic Theory of Oscillators 8 2.2.1 One-Port (Negative Resistance) 9 2.2.2 Two-Port (Feedback) View 12 2.3 Classification of Oscillators 15 2.3.1 Ring Oscillator 16 2.3.2 LC-Tank Oscillator 21 2.3.3 Type of the LC Oscillato 25 2.4 RLC-Tank Research 36 2.4.1 Quality Factor 37 2.4.2 Inductor 39 2.4.3 Resistors 48 2.4.4 Capacitors 49 2.4.5 Varactors 51 2.5 Design Concepts of Voltage-Controlled Oscillator 56 2.5.1 Parameters of a Voltage-Controlled Oscillator 58 2.5.2 Phase Noise in Oscillator 60 2.5.3 Tail Current Source 68 CHAPTER3 PRINCIPLES AND DESIGN CONCEPTS OF INJECTION LOCKING FREQUENCY DIVIDER 70 3.1 Introduction 70 3.2 Principle of Injection Locked Frequency Divider 71 3.2.1 Locking Range 73 3.3 Example For A Single Injection Of ILFD 76 CHAPTER 4 A CMOS QUADRATURE CAPACITIVE CROSS-COUPLED INJECTION-LOCKED FREQUENCY DIVIDER 78 4.1 Introduction 78 4.2 QILFD Circuit Design 80 4.3 Measurement and Discussion 82 CHAPTER 5 VOLTAGE TUNING EFFECT OF DUAL-RESONANCE RLC INJECTION-LOCKED FREQUENCY DIVIDE 90 5.1 Introduction 90 5.2 Circuit Design 91 5.3 Measurement Results 92 CHAPTER 6 VOLTAGE TUNING EFFECT ON LC DUAL-RESONANCE INJECTION-LOCKED FREQUENCY DIVIDER 108 6.1 Introduction 108 6.2 Circuit Design 109 6.3 Measurement Results 111 CHAPTER 7 CONCLUSIONS 108 REFERENCES 110

[1] B. Razavi, “RF Microelectronics”, Upper Saddle River, NJ: Prentice Hall, 1998
[2] N. M. Nguyen, and R. G. Meyer, “Start-up and frequency stability in high-frequency oscillators,” IEEE Journal of Solid-State Circuits, vol. 27, pp. 810-820, May. 1992.
[3] S. Smith, “Microelectronic Circuit 4th edition” , Oxford University Press 1998.
[4] N. M. Nguyen and R. G. Meyer, “Start-up and frequency stability in high-frequency oscillators”, IEEE J. Solid-State Circuit, vol. 27, no. 5, pp.810-820, May 1992
[5] B. Razavi, “RF Microelectronics 2nd edition”, Upper Saddle River, NJ: Prentice Hall, 2010
[6] J. Roggers, C. Plett, “Radio frequency integrated circuit design”, Artech House, 2003
[7] B.Razavi, “Design of Integrated Circuits for Optical Communications”, McGraw Hill
[8] B. Razavi, “Design of Analog CMOS Integrated Circuit”, McGraw Hill, 2008
[9] S.J. Lee, B. Kim, K. Lee, “A Novel High-Speed Ring Oscillator for Multiphase Clock Generation Using Negative Skewed Delay Scheme,” IEEE Journal of Solid-State Circuits, vol. 32, No. 2, February 1997
[10] G. Gonzalez , “Microwave Transistor Amplifiers Analysis And Design,” Prentice Hall, 1997
[11] Hajimiri, and T. H. Lee, “The design of low noise oscillators,” Kluwer Academic Publishers, 1999
[12] De Muer, M. Borremans, M.Steyaert, and G. Li Puma, “A 2GHz low-phase-noise integrated LC-VCO set with flicker-noise upconversion minimization,” IEEE J. Solid-State Circuits, vol. 35, pp. 1034-1038, 2000.
[13] T. H. Lee, The Design of CMOS Radio Frequency Integrated Circuits, Cambridge University Press 1998
[14] S.Levantino, C.Samori, A.Bonfanti, S.L.J. Gierkink, A.L. Lacaita, and V. Boccuzzi, “frequency dependence on bias current in 5 GHz CMOS VCOs: impact on tuning range and flicker noise upconversion,” IEEE J. Solid-State Circuits, vol. 37, pp. 1003-1001, 2002.
[15] J. Craninckx, and M. S. J. Steyaert, “A 1.8-GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors,” IEEE Journal of Solid-State Circuits, vol. 32, pp. 736-744, May 1997
[16] H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Transactions on Parts, Hybrids, and Packaging, vol. 10, pp. 101-109, Jun. 1974
[17] J. Craninckx and M. S. J. Steyaert, “A 1.8 GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 736–744, May. 1997.
[18] P. Yue, C. Ryu, JackLau, T. Lee, and S. Wong, “A physical model for planar spiral inductors on silicon,” 1996 International Electron Devices Meeting Technical Digest, pp. 155–158, Dec. 1996, Cambridge University Press 1998.
[19] P. Andreani, S. Mattisson, “On the use of MOS varactors in RF VCOs,” IEEE Journal of Solid-State Circuits, vol. 35, no. 6, pp. 905-910, June 2000.
[20] J. van der Tang, and D. Kasperkovitz, “Oscillator design efficiency: a new figure of merit for oscillator benchmarking,” IEEE International Symposium on Circuit and System (ISCAS), vol. 2, pp. 533-536, May 2000.
[21] J.J. Rael, and A. A. Abidi, “Physical processes of phase noise in differential LC oscillators,” IEEE Custom Integrated Circuits Conference, pp. 569–572, 2000.
[22] T. Lee and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 326–336, Mar. 2000.
[23] D. Leeson, “A simple model of feedback oscillator noise spectrum,” Proceedings of the IEEE, vol. 54, pp. 329–330, Feb. 1966.
[24] J. Craninckx and M. S. J. Steyaert, “A 1.75-GHz/3-V dual-modulus divide-by-128/ 129 prescaler in 0.7 um CMOS,
[25] Q. Huang and R. Rogenmoser, “Speed optimization of edge-triggered CMOS circuits for gigahertz single-phase clocks,” IEEE J. Solid-State Circuits, vol. 31, pp. 456-463, Mar. 1996.
[26] J. Lee and B. Razavi, “A 40 GHz frequency divider in 0.18μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, pp. 594-601, Apr. 2004
[27] H. R. Rategh, and T.H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813-821, June 1999.
[28] S. H. Lee, S. L. Jang, and Y. H. Chung, “A low voltage divide-by-4injection locked frequency divider with quadrature outputs,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 5, pp. 373–375, May 2007.
[29] H. R. Rategh, and T.H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813-821, June 1999
[30] H. Wu, and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” IEEE ISSCC Dig. Tech. Papers, pp. 412-413, Feb. 2001
[31] H. D. Wohlmuth and D. Kehrer, “A high sensitivity static 2:1 frequency divider up to 27 GHz in 120 nm CMOS,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 823-826, Sept. 2002.
[32] R. J. Betancourt-Zamora, S. Verma, and T. H. Lee, “1 GHz and 2.8 GHz CMOSinjection- locked ring oscillator prescalers,” IEEE Symposium on VLSI Circuits, pp. 47-50, June 2001
[33] H. Wu, “Signal generation and processing in high-frequency/high-speed silicon- based integrated circuits,” PhD thesis, California Institute of Technology, 2003.
[34] R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE, vol. 61, pp.1380-1385, Oct. 1973.5
[35] Z. Xu, Q. J. Gu, Y.-C. Wu, H.-Y. Jian, and M.-C. F. Chang,”A 70–78-GHz Integrated CMOS frequency synthesizer for W-band satellite communications” IEEE Trans. Microw. Theory Tech., vol. 59, no. 12, pp. 3206–3217, Dec. 2011.
[36] S.-L. Jang, Y.-H. Chung, S.-H. Lee, L.-R. Chi, and J.-F. Lee,” An integrated 5/2.5GHz direct-injection locked quadrature LC VCO ,” IEEE Microw. Wireless Compon. Lett., pp.142-144, Feb. 2007.
[37] S.-L. Jang, Y.-H. Chuang, S.-H. Lee and Y.-H. Chiang,” A current reused CMOS quadrature injection locked frequency divider ,” Microw. Opt. Technol. Lett. , pp.1804-1806, Aug. 2007.
[38] S.-L. Jang, C.-C. Liu, and J.-F. Huang, ” A wide locking range quadrature injection locked frequency divider with tunable active inductor,” IEICE Trans. Electronics., Vol.E91-C, No.3, pp.373-377, Mar. 2008.
[39] S.-L. Jang, C.-C. Liu, R.-K. Yang, C.-C. Shih, and C.-W. Chang, “A 0.35 um CMOS divide-by-2 quadrature injection-locked frequency divider based on voltage-current feedback topology”, Microelectronics Reliability, 50, pp.594–598, 2010.
[40] H. M. Cheema, R. Mahmoudi, "A 30 to 44 GHz divide-by-2, quadrature, direct injection locked frequency divider for sliding-IF 60 GHz transceivers", Silicon Monolithic Integrated Circuits in RF Systems (SiRF), 2010, pp. 57-59.
[41] S.-L. Jang, C.-W. Chang, J.-Y. Wun, and M.-H. Juang, ” Quadrature injection-locked frequency dividers using dual-resonance resonator,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 1, pp. 37-39, Jan. 2011.
[42] S.-L. Jang, L.-T. Chou, J.-F. Huang, C.-W. Chang, ” A dual-band dual-resonance quadrature injection-locked frequency divider,” IEICE Trans. Electron., Vol.E94-C,No.8,pp.1336-1339, Aug. 2011.
[43] S.-H. Lee, S.-L. Jang, and Y.-H. Chung , ” A low voltage divide-by-4 injection locked frequency divider with quadrature outputs,” IEEE Microw. Wireless Compon. Lett., pp.373-375, May, 2007.
[44] S.-L. Jang, Y.-H. Chuang, S.-H. Lee, and J.-J. Chao,” Circuit techniques for CMOS divide-by-4 frequency divider,” IEEE Microw. Wireless Compon. Lett., pp.217-219, March 2007.
[45] S.-L. Jang, C.-W. Lin, C.-C. Liu, and M.-H. Juang, " tail-injected divide-by-4 quadrature injection locked frequency divider, " Int. J. Electronics. Vol. 96, No. 12, pp.1225-1235, 2009.
[46] T.-C. Yan, H.-Y. Shih, T.-Y. Yang, and C.-N. Kuo, " A Q-band direct divide-by-4 injection-locked frequency divider with quadrature outputs,”, IEEE European Microwave Conf., 2010, pp.28-30.
[47] S.-L. Jang, C.-W. Chang, S.-C. Wu, C.-F. Lee, L.-Y. Tsai, and J.-F. Huang, ”Quadrature Hartley VCO and injection-locked frequency divider,” IEICE Trans. Electron., Vol.E91-C,No.8, pp.1371-1374, Aug. 2008.
[48] S.-L. Jang, S.-C. Wu, C.-F. Lee and M.-H. Juang ,” CMOS top-series coupling quadrature injection-locked frequency divider,” Microw. Opt. Technol. Lett., pp. 2554-2557, Oct. 2008.
[49] S.-L. Jang, C.-W. Chang, and S.-M. Yang, ” Low power wide-locking range CMOS quadrature injection-locked frequency divider,” Microw. Opt. Technol. Lett.,,vol. 51, No.10, pp. 2420-2423, 2009.
[50] M. Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE J. Solid-State Circuits,vol. 39, no. 7, pp. 1170–1174, Jul. 2004.
[51] K. Yamamoto and M. Fujishima, “55GHz CMOS frequency dividerwith 3.2GHz locking range” ESSCC, pp. 135-138, Aug., 2004
[52] H. Wu and A. Hajimiri, “A 19 GHz 0.5mW 0.35 μm CMOS frequencydivider with shunt-peaking locking-range enhancement,” in IEEE Int.Solid-State Circuits Conf., pp. 412-413, Feb. 2001.
[53] Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, J.-F. Lee and M.-H. Juang, “A wide locking range and low voltage CMOS direct injection-locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 299-301, May 2006.
[54] S.-L. Jang, Z.-H. Wu, C.-W. Hsue and H.-F. Teng,” Wide-locking range dual-band injection-locked frequency divider,” Microw. Opt. Technol. Lett. vol. 55, 10, pp. 2333–2337, October 2013.
[55] S.-L. Jang, L.-Y. Huang, C.-W. Hsue, and J.-F. Huang," Injection-locked frequency divider using injection mixer DC-biased in sub-threshold," IEEE Microw. Wireless Compon. Lett., vol. 25, no. 3, pp. 193-195, March 2015.
[56] H. R. Rategh and T. H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 813–821, June 1999
[57] J. Lee and B. Razavi, “A 40 GHz frequency divider in 0.18-μm CMOS technology,” in Symp. VLSI Circuits Dig. Tech. Papers, June 2003, pp. 259–262.
[58] S.-L. Jang, S.-S. Huang, J.-F. Lee and M.-H. Juang,” LC-tank Colpitts injection-locked frequency divider with record locking range,” IEEE Microw. Wireless Compon. Lett., pp.560-562, Aug. 2008.
[59] S. Lee, S. Jang, and C. Nguyen, “Low-power-consumption wide-locking-range dual-injection-locked 1/2 divider through simultaneous optimization of VCO loaded Q and current,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 10, pp. 3161–3168, Oct. 2012.
[60] N. Mahalingam, K. Ma, K. S. Yeo, and W. M. Lim, “Coupled dual LC tanks based ILFD with low injection power and compact size,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 2, pp. 105-107, Feb 2014.
[61] S.-L. Jang, F.-B. Lin,and J.-F. Huang, ” Wide-band divide-by-2 injection-locked frequency divider using MOSFET mixers DC-biased in subthreshold region,” Int. J. Circ Theor App, 12, Jan. 2015.
[62] R. L. Bunch, and S. Raman, “Large-signal analysis of MOS varactors in CMOS - Gm LC VCOs” IEEE J. Solid-State Circuits, vol. 38, no.8, pp.1325-1332, Aug. 2003.
[63] S. Levantino, C. Samori, A. Bonfanti, S. L. J. Gierkink, A. L. Lacaita, and V. Boccuzzi , “Frequency dependence on bias current in 5-GHz CMOS VCOs: impact on tuning range and flicker noise upconversion”, IEEE J. Solid-State Circuits, vol. 37, pp. 1003-1011, August 2002.
[64] S.-L. Jang, S. Jain, J.-F. Huang, and C.-W. Hsue, ” DC-bias and oscillation-amplitude dependent frequency-tuning characteristics of varactor-switching dual-band CMOS VCOs,” Microw. Opt. Technol. Lett. 55, 6, pp.1389-1393, June 2013.
[65] S.-L. Jang, L.-Y. Huang, C.-W. Hsue, and J. F. Huang," Injection-locked frequency divider using injection mixer DC-biased in sub-threshold," IEEE Microw. Wireless Compon. Lett., vol. 25, no. 3, pp. 193-195, March 2015.
[66] S.-L. Jang, Z.-H. Wu, C.-W. Hsue and H.-F. Teng,” Wide-locking range dual-band injection-locked frequency divider,” Microw. Opt. Technol. Lett. vol. 55, 10, pp. 2333–2337, October 2013.
[67] S.-L. Jang, ” Divide-by-3 injection-locked frequency dividers using dual-resonance resonator,” Analog Integr Circ Sig Process., Vol. 85, no.2, pp 335-341, Nov., 2015.

無法下載圖示 全文公開日期 2021/08/15 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE