簡易檢索 / 詳目顯示

研究生: 湯松陵
Sung-Ling Tang
論文名稱: 多醣類標靶性藥物載體粒子製劑於肝臟癌症治療上的應用與改良
Evaluation and applications of micro-polysaccharide drug carriers encapsulating chemotherapeutic agents for treatment of hepatic cancer
指導教授: 白孟宜
Meng-Yi Bai
洪伯達
Po-Da Hong
口試委員: 葉明功
Ming-Kung Yeh
駱俊良
Chun-Liang Lo
鄭詠馨
Yung-Hsin Cheng
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 163
中文關鍵詞: 殼聚醣棕櫚醯殼聚醣阿黴素超順磁氧化鐵熱治療肝癌
外文關鍵詞: chitosan, N-palmitoyl chitosan, doxorubicin, superparamagnetic iron oxide, hyperthermia, hepatocellular carcinoma
相關次數: 點閱:237下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

肝細胞癌是全球癌症第四大死因也是國人癌症第二大死因。針對無法以手術切除的肝細胞癌患者,經動脈灌流化學栓塞治療(Transarterial Chemoembolization, TACE)為現今最常使用的治療方法之一。然而,此治療方式卻有可能促進腫瘤血管新生及引起體內慢性發炎進而導致組織損傷。
在本研究中,嘗試開發新型球形、可生物降解、具治療協同作用的藥物載體粒子,以改善肝腫瘤栓塞與肝動脈灌注化療的治療效果。這些以多醣類為架構的新穎微米粒子(微粒)包含阿黴素(DOX)-硫酸軟骨素 (ChS)/殼聚醣(CS)、DOX-超順磁氧化鐵(SPIO)-ChS/CS與DOX-SPIO/棕櫚醯殼聚醣(NPCS)微粒等3項。微粒的顆粒型態及粒徑為利用穿透式以及掃描式電子顯微鏡進行分析,其粒徑大小為185±87nm至1.43 ±0.54μm之間。經由穿透式電子顯微鏡、X射線光電子能譜儀分析及核磁共振影像結果證實,SPIO成功包埋於微粒之中。在體外藥物釋放試驗結果,微粒顯示具有藥物緩釋作用,而DOX-SPIO/NPCS微粒在酸性環境(pH 6.5)比在鹼性環境下更能加速藥物之釋放。施予一外部磁場,微粒會呈現出加熱效應。在體外細胞毒性分析(MTT測試),微粒比單純DOX溶液具有較佳的抗腫瘤能力。在體內試驗,將微粒投予以HepG2或Huh6細胞異體移植的裸鼠中,微粒比單純DOX溶液呈現更強的抗腫瘤作用。綜上,本研究結果顯示所製備之微粒具有相當的潛力作為肝癌治療的藥物傳輸系統。


Hepatocellular carcinoma(HCC) is the fourth leading cause of cancer-related death in the world and the second leading cause in Taiwan. For unresectable HCC, transcatheter arterial chemoembolization(TACE) is one of the current standard therapy, but it may promote a proangiogenic response at the tumor site and induce inflammation in the body.
In this study, new types of spherical, biodegradable, therapeutically synergistic, and drug-loadable delivery vehicles were developed to improve the efficacy of hepatic tumor embolization and hepatic artery infusion chemotherapy. A series of novel polysaccharide based microparticles(MPs) including doxorubicin(DOX)-chondroitin sulfate(ChS)/chitosan(CS), DOX-superparamagnetic iron oxide(SPIO)-ChS/CS and DOX-SPIO/N-palmitoyl chitosan(NPCS) MPs were prepared for hepatic cancer treatment. The morphology and size of the MPs were investigated by transmission and scanning electron microscopy. The MPs had the diameters from 185±87nm to 1.43±0.54 μm. The success of encapsulating SPIO was verified by transmission electron microscopy(TEM), X-ray photoelectron spectroscopy(XPS) and nuclear magnetic resonance T2 imaging(NMRI). In the drug release profile, the MPs showed slow releasing effect, and DOX-SPIO/NPCS MPs was accelerated in acidic environment(pH 6.5) compared with that in a basic environment. MPs present heating effects under external magnetic field. Results of cytotoxicity assay(3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay) exhibited that MPs had better antitumor ability than free-form of DOX. According to the results of an animal study, the DOX-SPIO-ChS/CS MPs demonstrated stronger anti-tumor effect than free-form of DOX when it was administered to xenograft nude mice of HepG2/Huh6-bearing mice model in vivo. Thus, all these results suggested a considerable potential of MPs as a drug delivery system for hepatic cancer therapy.

博士學位論文指導教授推薦書 I 博士學位考試委員審定書 II 摘要 III Abstract IV 誌謝 VI 目錄 VII 表目錄 XI 圖目錄 XII 縮寫對照表 XV 第1章 緒論 1 1.1. 前言 1 1.2. 實驗動機與目的 6 1.3. 研究設計與實驗流程 8 1.3.1. DOX-ChS/CS微粒製備 9 1.3.2. DOX-SPIO-ChS/CS微粒製備 9 1.3.3. DOX-SPIO/NPCS微粒製備 9 1.3.4. 實驗流程 9 第2章 文獻回顧 11 2.1. 肝癌 11 2.1.1. 肝癌療法 11 2.1.2. 抗癌藥物阿黴素(Doxorubicin, DOX) 14 2.2. 奈米科技簡介 16 2.2.1. 奈米藥物的應用 16 2.2.2. 奈米藥物載體的製備(電噴霧製備技術) 18 2.3. 生物醫學材料簡介 20 2.3.1. 殼聚醣(Chitosan, CS) 20 2.3.2. 棕櫚醯殼聚醣(N-palmitoyl Chitosan, NPCS) 22 2.3.3. 硫酸軟骨素(ChS) 23 2.3.4. 超順磁氧化鐵(Super Paramagnetic Iron Oxide, SPIO) 25 第3章 研究方法 28 3.1. 實驗藥品、儀器與設備 28 3.1.1. 實驗藥品、耗材 28 3.1.2. 細胞培養試劑、耗材 29 3.1.3. 實驗儀器 29 3.2. 載體粒子製備 32 3.2.1. 離子膠凝法製備DOX-ChS/CS微粒 32 3.2.2. 離子膠凝法製備DOX-SPIO-ChS/CS微粒 33 3.2.3. 電噴霧技術製備DOX-SPIO-ChS/CS與DOX-SPIO/NPCS微粒 34 3.3. X射線光電子能譜儀分析(X-ray photoelectron spectroscopy, XPS) 35 3.4. 場發式掃描電子顯微鏡(Field-Emission Scanning Electron Microscope, FE-SEM)顆粒型態分析 36 3.5. 穿透式電子顯微鏡(Transmission electron microscope, TEM)顆粒尺寸分析 36 3.6. 核磁共振影像實驗(Magnetic Resonance Imaging, MRI) 37 3.7. 體外釋放試驗 38 3.7.1. DOX標準曲線建立 38 3.7.2. 微粒體外釋放試驗 38 3.8. 磁場加熱試驗 39 3.9. 細胞試驗 40 3.9.1. 細胞種類 40 3.9.2. 細胞培養技術 40 3.9.2.1. 細胞培養基配製 40 3.9.2.2. 細胞冷凍保存及解凍作業 41 3.9.2.3. 細胞繼代培養步驟 42 3.9.2.4. 細胞計數步驟 43 3.9.3. 細胞毒性試驗 43 3.9.4. 細胞熱治療試驗 44 3.10. 動物試驗 45 3.10.1. 動物品系 45 3.10.2. 動物腫瘤模式建立 46 3.10.3. 動物模式抗腫瘤成效評估 47 3.11. 統計分析 48 第4章 結果與討論 49 4.1. 微粒基本特性 49 4.2. 微粒材料性質分析 50 4.2.1. DOX-SPIO-ChS/CS微粒XPS分析結果 50 4.3. 微粒型態分析 51 4.3.1. DOX-SPIO-ChS/CS與DOX-SPIO/NPCS微粒SEM影像 51 4.3.2. DOX-SPIO-ChS/CS與DOX-SPIO/NPCS微粒TEM影像 52 4.4. MRI影像結果 53 4.4.1. DOX-SPIO-ChS/CS與DOX-SPIO/NPCS微粒MRI影像 53 4.5. 磁場加熱試驗 55 4.6. 體外釋放試驗 55 4.6.1. 微粒體外釋放曲線 55 4.7. 體外抗腫瘤細胞試驗 56 4.7.1. DOX-ChS/CS、DOX-SPIO-ChS/CS與DOX-SPIO/NPCS毒性試驗結果 56 4.7.2. DOX-SPIO/NPCS熱治療試驗結果 58 4.8. 動物試驗 58 4.8.1. 動物體重變化結果 58 4.8.2. 動物腫瘤變化結果 59 4.8.3. 腫瘤病理切片結果 60 第5章 結論 61 第6章 參考文獻 62 附錄一 103

1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F: Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. International journal of cancer 2015, 136(5):E359-E386.
2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians 2018, 68(6):394-424.
3. 106年國人死因統計結果。 [https://www.mohw.gov.tw/cp-3795-41794-1.html]
4. Hsu C, Cheng J, Cheng A-L: Recent advances in non-surgical treatment for advanced hepatocellular carcinoma. Journal of the Formosan Medical Association= Taiwan yi zhi 2004, 103(7):483-495.
5. Kumar: Nanomaterials for Cancer Therapy, 1 edn: Wiley-Vch Verlag Gmbh & Co. KgaA; 2006.
6. Lammer J, Malagari K, Vogl T, Pilleul F, Denys A, Watkinson A, Pitton M, Sergent G, Pfammatter T, Terraz S: Prospective randomized study of doxorubicin-eluting-bead embolization in the treatment of hepatocellular carcinoma: results of the PRECISION V study. Cardiovascular and interventional radiology 2010, 33(1):41-52.
7. Jordan O, Denys A, De Baere T, Boulens N, Doelker E: Comparative study of chemoembolization loadable beads: in vitro drug release and physical properties of DC bead and hepasphere loaded with doxorubicin and irinotecan. Journal of vascular and interventional radiology 2010, 21(7):1084-1090.
8. Oliveri RS, Wetterslev J, Gluud C: Transarterial (chemo) embolisation for unresectable hepatocellular carcinoma. Cochrane database of systematic reviews 2011(3).
9. Torchilin VP: Structure and design of polymeric surfactant-based drug delivery systems. Journal of controlled release 2001, 73(2-3):137-172.
10. Tang S-L, Bai M-Y, Wang J-Y, Hong P-D: Development and application of micro-polysaccharide drug carriers incorporating doxorubicin and superparamagnetic iron oxide for bimodality treatment of hepatocellular carcinoma. Colloids and Surfaces B: Biointerfaces 2017, 151:304-313.
11. Moriguchi M, Furuta M, Itoh Y: A review of non-operative treatments for hepatocellular carcinoma with advanced portal vein tumor thrombus. Journal of clinical and translational hepatology 2017, 5(2):177.
12. Ikeda M, Okusaka T, Furuse J, Mitsunaga S, Ueno H, Yamaura H, Inaba Y, Takeuchi Y, Satake M, Arai Y: A multi-institutional phase II trial of hepatic arterial infusion chemotherapy with cisplatin for advanced hepatocellular carcinoma with portal vein tumor thrombosis. Cancer chemotherapy and pharmacology 2013, 72(2):463-470.
13. Kudo M, Ueshima K, Yokosuka O, Obi S, Izumi N, Aikata H, Nagano H, Hatano E, Sasaki Y, Hino K: Prospective randomized controlled phase III trial comparing the efficacy of sorafenib versus sorafenib in combination with low-dose cisplatin/fluorouracil hepatic arterial infusion chemotherapy in patients with advanced hepatocellular carcinoma. Journal of Hepatology 2016, 64(2):S209-S210.
14. Ikeda M, Shimizu S, Sato T, Morimoto M, Kojima Y, Inaba Y, Hagihara A, Kudo M, Nakamori S, Kaneko S: Sorafenib plus hepatic arterial infusion chemotherapy with cisplatin versus sorafenib for advanced hepatocellular carcinoma: randomized phase II trial. Annals of Oncology 2016, 27(11):2090-2096.
15. Mocellin S, Pasquali S, Nitti D: Fluoropyrimidine‐HAI (hepatic arterial infusion) versus systemic chemotherapy (SCT) for unresectable liver metastases from colorectal cancer. Cochrane Database of Systematic Reviews 2009(3).
16. Power DG, Kemeny NE: The role of floxuridine in metastatic liver disease. Molecular cancer therapeutics 2009, 8(5):1015-1025.
17. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D: Global cancer statistics. CA: a cancer journal for clinicians 2011, 61(2):69-90.
18. El‐Serag HB, Kanwal F: Epidemiology of hepatocellular carcinoma in the United States: where are we? Where do we go? Hepatology 2014, 60(5):1767-1775.
19. Chen DS: Hepatocellular carcinoma in Taiwan. Hepatology Research 2007, 37:S101-S105.
20. Investigators CotLIP: A new prognostic system for hepatocellular carcinoma: a retrospective study of 435 patients. Hepatology 1998, 28(3):751-755.
21. Yeh M-k, Cheng K-m, Hu C-s, Huang Y-c, Young J-j: Novel protein-loaded chondroitin sulfate–chitosan nanoparticles: Preparation and characterization. Acta biomaterialia 2011, 7(10):3804-3812.
22. Bai M-Y, Yang H-C: Fabrication of novel niclosamide-suspension using an electrospray system to improve its therapeutic effects in ovarian cancer cells in vitro. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2013, 419:248-256.
23. 劉利萍 吳, 李萍, 傅遍紅: 天然高分子磁微球作為靶向製劑的研究近展. 藥物生物技術 2004, 11.
24. Fan W, Yan W, Xu Z, Ni H: Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloids and Surfaces B: Biointerfaces 2012, 90:21-27.
25. Avadi MR, Sadeghi AMM, Mohammadpour N, Abedin S, Atyabi F, Dinarvand R, Rafiee-Tehrani M: Preparation and characterization of insulin nanoparticles using chitosan and Arabic gum with ionic gelation method. Nanomedicine: Nanotechnology, Biology and Medicine 2010, 6(1):58-63.
26. Tsai ML, Bai SW, Chen RH: Cavitation effects versus stretch effects resulted in different size and polydispersity of ionotropic gelation chitosan–sodium tripolyphosphate nanoparticle. Carbohydrate Polymers 2008, 71(3):448-457.
27. Du W-L, Niu S-S, Xu Y-L, Xu Z-R, Fan C-L: Antibacterial activity of chitosan tripolyphosphate nanoparticles loaded with various metal ions. Carbohydrate Polymers 2009, 75(3):385-389.
28. Karaman B, Battal B, Sari S, Verim S: Hepatocellular carcinoma review: Current treatment, and evidence-based medicine. World Journal of Gastroenterology: WJG 2014, 20(47):18059.
29. Yu SJ: A concise review of updated guidelines regarding the management of hepatocellular carcinoma around the world: 2010-2016. Clinical and molecular hepatology 2016, 22(1):7.
30. Ferenci P, Fried M, Labrecque D, Bruix J, Sherman M, Omata M, Heathcote J, Piratsivuth T, Kew M, Otegbayo JA: World gastroenterology organisation global guideline. Hepatocellular carcinoma (hcc): A global perspective. J gastrointestin liver dis 2010, 19(3):311-317.
31. Ihde DC, Kane RC, Cohen R, McIntire KR, Minna J: Adriamycin therapy in American patients with hepatocellular carcinoma. Cancer treatment reports 1977, 61(7):1385-1387.
32. Lai CL, Lok ASF, Wu PC, Chan GCB, Lin HJ: Doxorubicin versus no antitumor therapy in inoperable hepatocellular carcinoma. A prospective randomized trial. Cancer 1988, 62(3):479-483.
33. Wang JJ, Cortes E, Sinks LF, Holland JF: Therapeutic effect and toxicity of adriamycin in patients with neoplastic disease. Cancer 1971, 28(4):837-843.
34. Tan C, Etcubanas E, Wollner N, Rosen G, Gilladoga A, Showel J, Murphy ML, Krakoff IH: Adriamycin—an antitumor antibiotic in the treatment of neoplastic diseases. Cancer 1973, 32(1):9-17.
35. Pohl J, Zuna I, Stremmel W, Rudi J: Systemic chemotherapy with epirubicin for treatment of advanced or multifocal hepatocellular carcinoma. Chemotherapy 2001, 47(5):359-365.
36. Colleoni M, Buzzoni R, Bajetta E, Bochicchio AM, Bartoli C, Audisio R, Bonfanti G, Nolè F: A phase II study of mitoxantrone combined with beta‐interferon in unresectable hepatocellular carcinoma. Cancer 1993, 72(11):3196-3201.
37. Porta C, Moroni M, Nastasi G, Arcangeli G: 5-Fluorouracil and d, l-leucovorin calcium are active to treat unresectable hepatocellular carcinoma patients: preliminary results of a phase II study. Oncology 1995, 52(6):487-491.
38. Yang TS, Lin YC, Chen JS, Wang HM, Wang CH: Phase II study of gemcitabine in patients with advanced hepatocellular carcinoma. Cancer: Interdisciplinary International Journal of the American Cancer Society 2000, 89(4):750-756.
39. O'Reilly EM, Stuart KE, Sanz‐Altamira PM, Schwartz GK, Steger CM, Raeburn L, Kemeny NE, Kelsen DP, Saltz LB: A phase II study of irinotecan in patients with advanced hepatocellular carcinoma. Cancer 2001, 91(1):101-105.
40. Lin AY, Brophy N, Fisher GA, So S, Biggs C, Yock TI, Levitt L: Phase II study of thalidomide in patients with unresectable hepatocellular carcinoma. Cancer 2005, 103(1):119-125.
41. Lee J, Park JO, Kim WS, Park SH, Park KW, Choi MS, Lee JH, Koh KC, Paik SW, Yoo BC: Phase II study of doxorubicin and cisplatin in patients with metastatic hepatocellular carcinoma. Cancer chemotherapy and pharmacology 2004, 54(5):385-390.
42. Louafi S, Boige V, Ducreux M, Bonyhay L, Mansourbakht T, de Baere T, Asnacios A, Hannoun L, Poynard T, Taïeb J: Gemcitabine plus oxaliplatin (GEMOX) in patients with advanced hepatocellular carcinoma (HCC) Results of a phase II study. Cancer: Interdisciplinary International Journal of the American Cancer Society 2007, 109(7):1384-1390.
43. Ye S-L, Takayama T, Geschwind J, Marrero JA, Bronowicki J-P: Current approaches to the treatment of early hepatocellular carcinoma. The Oncologist 2010, 15(Supplement 4):34-41.
44. Lencioni R, Petruzzi P, Crocetti L: Chemoembolization of hepatocellular carcinoma. In: Seminars in interventional radiology: 2013. Thieme Medical Publishers: 003-011.
45. Kettenbach J, Stadler A, Katzler Iv, Schernthaner R, Blum M, Lammer J, Rand T: Drug-loaded microspheres for the treatment of liver cancer: review of current results. Cardiovascular and interventional radiology 2008, 31(3):468-476.
46. Wang SC, Bester L, Burnes J, Clouston J, Hugh T, Little A, Padbury R, Price D: Clinical care and technical recommendations for 90yttrium microsphere treatment of liver cancer. Journal of medical imaging and radiation oncology 2010, 54(3):178-187.
47. Deffie AM, Batra JK, Goldenberg GJ: Direct correlation between DNA topoisomerase II activity and cytotoxicity in adriamycin-sensitive and-resistant P388 leukemia cell lines. Cancer research 1989, 49(1):58-62.
48. Gewirtz D: A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochemical pharmacology 1999, 57(7):727-741.
49. Khouri MG, Hornsby WE, Risum N, Velazquez EJ, Thomas S, Lane A, Scott JM, Koelwyn GJ, Herndon JE, Mackey JR: Utility of 3-dimensional echocardiography, global longitudinal strain, and exercise stress echocardiography to detect cardiac dysfunction in breast cancer patients treated with doxorubicin-containing adjuvant therapy. Breast cancer research and treatment 2014, 143(3):531-539.
50. Safra T, Muggia F, Jeffers S, Tsao-Wei D, Groshen S, Lyass O, Henderson R, Berry G, Gabizon A: Pegylated liposomal doxorubicin (doxil): reduced clinical cardiotoxicity in patients reaching or exceeding cumulative doses of 500 mg/m2. Annals of Oncology 2000, 11(8):1029-1033.
51. ten Hagen TL, Seynhaeve AL, van Tiel ST, Ruiter DJ, Eggermont AM: Pegylated liposomal tumor necrosis factor‐α results in reduced toxicity and synergistic antitumor activity after systemic administration in combination with liposomal doxorubicin (Doxil®) in soft tissue sarcoma‐bearing rats. International journal of cancer 2002, 97(1):115-120.
52. Zhao Y, Alakhova DY, Kim JO, Bronich TK, Kabanov AV: A simple way to enhance Doxil® therapy: drug release from liposomes at the tumor site by amphiphilic block copolymer. Journal of controlled release 2013, 168(1):61-69.
53. Tacar O, Sriamornsak P, Dass CR: Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. Journal of pharmacy and pharmacology 2013, 65(2):157-170.
54. Paszko E, Ehrhardt C, Senge MO, Kelleher DP, Reynolds JV: Nanodrug applications in photodynamic therapy. Photodiagnosis and photodynamic therapy 2011, 8(1):14-29.
55. Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z: Polysaccharides-based nanoparticles as drug delivery systems. Advanced drug delivery reviews 2008, 60(15):1650-1662.
56. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K: Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. Journal of controlled release 2000, 65(1-2):271-284.
57. Ganta S, Devalapally H, Shahiwala A, Amiji M: A review of stimuli-responsive nanocarriers for drug and gene delivery. Journal of controlled release 2008, 126(3):187-204.
58. Wilm MS, Mann M: Electrospray and Taylor-Cone theory, Dole's beam of macromolecules at last? International Journal of Mass Spectrometry and Ion Processes 1994, 136(2-3):167-180.
59. Jarvas G, Guttman A, Foret F: Numerical modeling of capillary electrophoresis–electrospray mass spectrometry interface design. Mass spectrometry reviews 2015, 34(5):558-569.
60. Sridhar R, Ramakrishna S: Electrosprayed nanoparticles for drug delivery and pharmaceutical applications. Biomatter 2013, 3(3):e24281.
61. Tan ML, Choong PF, Dass CR: Doxorubicin delivery systems based on chitosan for cancer therapy. Journal of Pharmacy and Pharmacology 2009, 61(2):131-142.
62. Kas HS: Chitosan: properties, preparations and application to microparticulate systems. Journal of microencapsulation 1997, 14(6):689-711.
63. Kean T, Roth S, Thanou M: Trimethylated chitosans as non-viral gene delivery vectors: cytotoxicity and transfection efficiency. Journal of Controlled Release 2005, 103(3):643-653.
64. Singh M, O'Hagan DT: Recent advances in vaccine adjuvants. Pharmaceutical research 2002, 19(6):715-728.
65. Kato Y, Onishi H, Machida Y: Application of chitin and chitosan derivatives in the pharmaceutical field. Current Pharmaceutical Biotechnology 2003, 4(5):303-309.
66. Cui Z, Mumper RJ: Chitosan-based nanoparticles for topical genetic immunization. Journal of Controlled Release 2001, 75(3):409-419.
67. Kabbap M, Phillips N: Anticancer activity of mycobacterial DNA: effect of formulation as chitosan nanoparticles. Journal of drug targeting 2001, 9(5):317-328.
68. Artursson P, Lindmark T, Davis SS, Illum L: Effect of chitosan on the permeability of monolayers of intestinal epithelial cells (Caco-2). Pharmaceutical research 1994, 11(9):1358-1361.
69. Aspden TJ, Mason JD, Jones NS, Lowe J, Skaugrud Ø, Illum L: Chitosan as a nasal delivery system: the effect of chitosan solutions on in vitro and in vivo mucociliary transport rates in human turbinates and volunteers. Journal of pharmaceutical sciences 1997, 86(4):509-513.
70. Barroso JA, Contreras F, Bagchi D, Preuss HG: Efficacy of a novel chitosan formulation on fecal fat excretion: a double-blind, crossover, placebo-controlled study. Journal of medicine 2002, 33(1-4):209-225.
71. Baudner BC, Giuliani MM, Verhoef JC, Rappuoli R, Junginger HE, Del Giudice G: The concomitant use of the LTK63 mucosal adjuvant and of chitosan-based delivery system enhances the immunogenicity and efficacy of intranasally administered vaccines. Vaccine 2003, 21(25-26):3837-3844.
72. Rao SB, Sharma CP: Use of chitosan as a biomaterial: studies on its safety and hemostatic potential. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials and The Japanese Society for Biomaterials 1997, 34(1):21-28.
73. Skaugrud Ø, Hagen A, Borgersen B, Dornish M: Biomedical and pharmaceutical applications of alginate and chitosan. Biotechnology and genetic engineering reviews 1999, 16(1):23-40.
74. Noble L, Gray AI, Sadiq L, Uchegbu IF: A non-covalently cross-linked chitosan based hydrogel. International Journal of Pharmaceutics 1999, 192(2):173-182.
75. Hoekstra A, Struszczyk H, Kivekäs O: Percutaneous microcrystalline chitosan application for sealing arterial puncture sites. Biomaterials 1998, 19(16):1467-1471.
76. Stubbs M, McSheehy PM, Griffiths JR, Bashford CL: Causes and consequences of tumour acidity and implications for treatment. Molecular medicine today 2000, 6(1):15-19.
77. Jiang G-B, Quan D, Liao K, Wang H: Novel polymer micelles prepared from chitosan grafted hydrophobic palmitoyl groups for drug delivery. Molecular pharmaceutics 2006, 3(2):152-160.
78. Liang G, Jia‐Bi Z, Fei X, Bin N: Preparation, characterization and pharmacokinetics of N‐palmitoyl chitosan anchored docetaxel liposomes. Journal of pharmacy and pharmacology 2007, 59(5):661-667.
79. Chiu Y-L, Chen S-C, Su C-J, Hsiao C-W, Chen Y-M, Chen H-L, Sung H-W: pH-triggered injectable hydrogels prepared from aqueous N-palmitoyl chitosan: in vitro characteristics and in vivo biocompatibility. Biomaterials 2009, 30(28):4877-4888.
80. Bai M-Y, Tang S-L, Chuang M-H, Wang T-Y, Hong P-d: Evaluation of chitosan derivative microparticles encapsulating superparamagnetic Iron oxide and doxorubicin as a pH-sensitive delivery carrier in hepatic carcinoma treatment: an in vitro comparison study. Frontiers in pharmacology 2018, 9.
81. Li Q, Williams CG, Sun DD, Wang J, Leong K, Elisseeff JH: Photocrosslinkable polysaccharides based on chondroitin sulfate. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 2004, 68(1):28-33.
82. Peng Y-S, Lin S-C, Huang S-J, Wang Y-M, Lin Y-J, Wang L-F, Chen J-S: Chondroitin sulfate-based anti-inflammatory macromolecular prodrugs. European journal of pharmaceutical sciences 2006, 29(1):60-69.
83. 陳燕華: 神奇的奈米磁鐵礦. 科學發展 2013, 482:6.
84. Plank C, Zelphati O, Mykhaylyk O: Magnetically enhanced nucleic acid delivery. Ten years of magnetofection—Progress and prospects. Advanced drug delivery reviews 2011, 63(14-15):1300-1331.
85. Heldin C-H, Rubin K, Pietras K, Östman A: High interstitial fluid pressure—an obstacle in cancer therapy. Nature Reviews Cancer 2004, 4(10):806.
86. Stapleton S, Dunne M, Milosevic M, Tran CW, Gold MJ, Vedadi A, Mckee TD, Ohashi PS, Allen C, Jaffray DA: Radiation and heat improve the delivery and efficacy of Nanotherapeutics by modulating Intratumoral fluid dynamics. ACS nano 2018, 12(8):7583-7600.
87. Bai M-Y, Liu S-Z: A simple and general method for preparing antibody-PEG-PLGA sub-micron particles using electrospray technique: an in vitro study of targeted delivery of cisplatin to ovarian cancer cells. Colloids and Surfaces B: Biointerfaces 2014, 117:346-353.
88. Lee Y-H, Mei F, Bai M-Y, Zhao S, Chen D-R: Release profile characteristics of biodegradable-polymer-coated drug particles fabricated by dual-capillary electrospray. Journal of controlled Release 2010, 145(1):58-65.
89. Lin C-K, Bai M-Y, Hu T-M, Wang Y-C, Chao T-K, Weng S-J, Huang R-L, Su P-H, Lai H-C: Preclinical evaluation of a nanoformulated antihelminthic, niclosamide, in ovarian cancer. Oncotarget 2016, 7(8):8993.
90. Arya N, Chakraborty S, Dube N, Katti DS: Electrospraying: a facile technique for synthesis of chitosan‐based micro/nanospheres for drug delivery applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 2009, 88(1):17-31.
91. Chen Y-W, Liou G-G, Pan H-B, Tseng H-H, Hung Y-T, Chou C-P: Specific detection of CD133-positive tumor cells with iron oxide nanoparticles labeling using noninvasive molecular magnetic resonance imaging. International journal of nanomedicine 2015, 10:6997.
92. Calvo P, Remunan‐Lopez C, Vila‐Jato JL, Alonso M: Novel hydrophilic chitosan‐polyethylene oxide nanoparticles as protein carriers. Journal of Applied Polymer Science 1997, 63(1):125-132.
93. Qiu G-H, Xie X, Xu F, Shi X, Wang Y, Deng L: Distinctive pharmacological differences between liver cancer cell lines HepG2 and Hep3B. Cytotechnology 2015, 67(1):1-12.
94. Van Meerloo J, Kaspers GJ, Cloos J: Cell sensitivity assays: the MTT assay. In: Cancer cell culture. Springer; 2011: 237-245.
95. Stockert JC, Horobin RW, Colombo LL, Blázquez-Castro A: Tetrazolium salts and formazan products in Cell Biology: Viability assessment, fluorescence imaging, and labeling perspectives. Acta histochemica 2018, 120(3):159-167.
96. Adan A, Kiraz Y, Baran Y: Cell proliferation and cytotoxicity assays. Current pharmaceutical biotechnology 2016, 17(14):1213-1221.
97. Peskin AV, Winterbourn CC: A microtiter plate assay for superoxide dismutase using a water-soluble tetrazolium salt (WST-1). Clinica chimica acta 2000, 293(1-2):157-166.
98. Zhang M, Li X, Gong Y, Zhao N, Zhang X: Properties and biocompatibility of chitosan films modified by blending with PEG. Biomaterials 2002, 23(13):2641-2648.
99. Iversen T-G, Skotland T, Sandvig K: Endocytosis and intracellular transport of nanoparticles: present knowledge and need for future studies. Nano today 2011, 6(2):176-185.
100. Verma A, Stellacci F: Effect of surface properties on nanoparticle–cell interactions. Small 2010, 6(1):12-21.
101. Morelli D, Ménard S, Colnaghi MI, Balsari A: Oral administration of anti-doxorubicin monoclonal antibody prevents chemotherapy-induced gastrointestinal toxicity in mice. Cancer research 1996, 56(9):2082-2085.

無法下載圖示 全文公開日期 2024/08/27 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE