簡易檢索 / 詳目顯示

研究生: 吳志宏
Jyh-Horng Wu
論文名稱: 高分子奈米複合材料能量傳遞機制之研究
A Study on the Energy Transportation Mechanism of Polymer Nanocomposites
指導教授: 邱顯堂
Hsien-Tang Chiu
口試委員: 張豐志
none
陳劉旺
none
金惟國
none
李俊毅
none
邱士軒

葛光祥
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 150
中文關鍵詞: 矽橡膠聚排咯碳黑高分子電解質導電性聚胺基甲酸乙脂奈米黏土遲滯效應
外文關鍵詞:  polypyrrole, polymer ele,  silicone
相關次數: 點閱:921下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要針對電能與力學能於高分子基材內之傳遞機制二大方向作為本研究之主要目標。
    在高分子奈米複合材料電能傳遞機制之研究方面,於silicone高分子基材中之聚咯 (Ppy)及碳黑 (CB)屬電子傳導機制,而高分子電解質改質劑 (polypropylene oxide- polyethylene oxide copolymer with 20 wt \\\% LiClO4;PEL)則屬離子傳導機制。因此本研究嘗試將CB、Ppy及PEL分別具有電子傳導及離子傳導特性之材料導入silicone基材內,詳析兩種導電機制之相互作用,並探討改質劑(modifier)對silicone加工性、形態學、分子間之相互作用力、力學物性及導電性,經由系統性實驗尋求最適化之材料設計指標。
    對於高分子奈米複合材料力學能傳遞機制之研究方面,則經由奈米黏土之導入探討高分子電解質和不同碳數之烷基胺鹽(alkylammonium cation)對黏土進行改質後掺混於聚胺基甲酸乙脂 (PU)基材中,形成隨機奈米尺寸(random nano-scale)三明治結構分散於高分子基材中,由材料插層效應、物性、動態機械分析、遲滯效應及動態性質防振試驗,尋求最適化之材料設計指標及奈米黏土插層改質之力學阻尼機制。

    經由上述電能傳遞機制之研究結果顯示:
    1.添加10 wt\\\% PEL改質silicone其反應速率最快。
    2.且silicone與PEL間無產生化學反應,PEL僅纏繞於Silicone網目上形成semi-IPN結構,致使Ppy分子更能夠滲入膠體 (blends)中和增加分子間之相互作用力。
    3.當silicone經離子/電子複合導電加工後,導電性(conductivity)受分子間相互作用力(intermolecular interaction)之拘束及離子(ionic)與電子(electronic)導電性相互牴觸,因此對其導電性並無加乘效果。

    對於力學能傳遞機制之研究結果顯示:
    1.黏土和有機黏土在PEL高分子的存在下,黏土片層間距(d-spacing)為1.78-1.91nm範圍。
    2.以不同比例掺混於PU基材中,經壓縮振動遲滯效應可知,當粘土經有機改質後可明顯提升掺合膠之防振性能。
    3.而在動態性質防振試驗得知,掺合膠隨著黏土和有機黏土的添加後,其動態倍率(Dynamic ratio)降低,因此在防振性能上,有明顯提升的效果。另外,黏土提升掺合膠之制振性比有機黏土有一較佳效果。


    The objective of this study is to investigate the energy transportation mechanism in polymers matrix. The energy transportation mechanism concerned about electric and mechanical energy.
    The conductive effect of an electronic/ionic complex conductivity modifier for silicone elastomers, which demonstrated an ionic/electronic compounding conductivity effect through the complexation of polypyrrole (Ppy), carbon black (CB), and a poly (propylene oxide)-poly(ethylene oxide) copolymer with 20 wt \\\% LiClO4 (PEL). We tried to use the electronic conduction of CB and Ppy and the ionic conduction of PEL with a silicone matrix. The interaction between these two conduction mechanisms and the influence of the PEL modifier on silicone processing, morphology, intermolecular interaction, mechanical properties, and conductivity were evaluated.
    In addition, the mechanics energy transportation mechanism of nanoclay modified PU/PEL blends system. The main goal of this study was to evaluate the effect of the incorporation of clay and organoclay in the PU/PEL (mPU) blends to form intercalated nanocomposites with random distribution sandwich structures of nano-scale organoclay having high stiffness and optimum anti-vibration property. In our experiment, variation of the basal plan spacing of clay and organoclay in the mPU blends was investigated with X-ray; dynamic mechanical analysis (DMA), hysteresis phenomenon and dynamic properties tests were conducted to evaluate the anti-vibration performance and vibration isolation of the polymer material in order to evaluate the effect of the d-spacing of nanoclay on the mPU blending system.

    According to the electric energy transportation mechanism experimentals we find the results as follows:
    1.The curing reaction rate is fast upon addition of 10wt\\\% of PEL for silicone.
    2.The linear molecular structure of polymer electrolyte was wound around the silicone polymer network structure forming semi-IPN. This shows that the Ppy molecule can permeate into SP10 blends more deeply and intermolecular interaction increase.
    3.The conductivity of CB showed no significant difference in the SP10 blends. Therefore, after the silicone matrix treatment of the electronic/ionic complex conduction process, there was no incremental effect to the conductivity.

    According to the mechanics energy transportation mechanism experimentals we find the results as follows::
    1.The d-spacing between the layers of clay and organoclay ranges between 1.78-1.88nm in the presence of PEL.
    2.The PU matrix blend with various clay and the Oc contents, it is found that organically modified clay significantly improves the anti-vibration performance of the blends based on the compressive vibration hysteresis effect.
    3.From the results of dynamic anti-vibration test, the dynamic ratio of the blends decreases with the addition of clay or organoclay. In addition, clay is better than organoclay in enhancing the vibration isolation of the mPU blends.

    中文摘要..I 英文摘..Ш 誌謝…v 圖表索引…XⅡ 第一章 緒論..……1 1. 研究背景及現況………1 1.1 高分子的導電化技…2 1.1.1 高分子/聚排咯複合導體…3 1.1.2 Silicone/Filler複合導體… 4 1.1.3 導電機制 …5 1.2 高分子複合材料防振特性 …7 1.2.1 黏土有機化處…10 1.2.2. PU/clay奈米複合材…10 2. 研究特徵與目的 …12 2.1研究架構………… 13 參考文獻………18 第二章 Silicone/Polypyrrole/Polypropyleneoxide-Polyethylene oxide Copolymer導電薄膜機械性質、分子間相互作用力和型態學之研究...25 中文摘要…26 英文摘要…27 2.1 前言…28 2.2 實驗…29 2.2.1 材料……29 2.2.1 樣品製備…………29 2.3 測試………………………29 2.3.1剛性擺錘流變儀之測定 ………29 2.3.2 FTIR分析…………………30 2.3.3 DSC 分析…………………30 2.3.4 機械性質測試……………30 2.3.5 動態機械性質分析………30 2.3.6 形態學考察………………31 2.4 結果與討論………………………31 2.4.1 Silicone/PEL 掺合膠之硬化加工 …31 2.4.2 Silicone/PEL 掺合膠之網目結構分析 32 2.4.3 Silicone/PEL掺合膠之機械性質 32 2.4.4 Silicone/PEL/Ppy複合材料之分子間相互作用力 33 2.4.5 Silicone/polypyrrole/PEL複合材之表面型態 … 34 2.5 結論 …………… 34 2.6 參考文獻……… 36 第三章 電子/離子導電劑改質Silicone薄膜導電作用機制之研究............48 中文摘要 ……………49 英文摘要……………50 3.1 前言………………………51 3.2 實驗………………………52 3.2.1 材料……………………52 3.2.2 樣品製備………………52 3.3 測試………………………53 3.3.1 剛性擺錘流變儀(Rigid-Body Pendulum Rheometer)測試原理….......53 3.3.2 Energy Dispersive X-ray Spectrometer (EDS)分析 .......................53 3.3.3 電子/離子導電測試 … 53 3.3.4 介電常數及損失因子測試 53 3.4 結果與討論 ………… 54 3.4.1 Silicone/PEL薄膜熟化加工條件觀測 …54 3.4.2 Ppy含浸層在silicone及silicone/PEL內之擴散分佈狀況..................55 3.4.3 Silicone/PEL 掺合膠之離子導電性…… 55 3.4.4 Silicone/PEL/Ppy 複合材料之電子/離子複合導電性 .56 3.4.5 Silicone/PEL/CB 複合材料之電子/離子複合導電性… 56 3.4.6 Silicone/PEL/Ppy and silicone/PEL/CB複合材料之介電常數(dielectric constant)與散逸因子(loss factor)…57 3.5 結論 ……57 3.6 參考文獻…………………58 第四章 Silicone/Polypropylene Oxide-Polyethylene Oxide Copolymer/Clay複合材料之研究(Ⅰ)-硬化行為、分子間相互作用力 和熱機械性質 …………………68 中文摘要 ………………………60 英文摘要 ………………………70 4.1 前言 ………………………71 4.2 實驗 ………………………72 4.2.1 材料 ……………………72 4.2.2 有機黏土製備 …………72 4.2.3 掺混及試片製作 ………73 4.3測試 ……………………… 73 4.3.1 X-ray 測試 ……………73 4.3.2 剛性擺錘振動減衰儀(Rigid-Body Pendulum Rheometer)之測定...........73 4.3.3 動態機械分析 …………74 4.3.4 TGA分析…………………74 4.3.5 力學物性測試 …………74 4.4 結果與討論 ………………74 4.4.1 Silicone/PEL/clay 奈米複合材料之層間距離 …74 4.4.2 Silicone/PEL/clay奈米複合材料之硬化行為探討……75 4.4.3 Silicone/PEL/clay 奈米複合材料之分子間相互作用力 77 4.4.4 Silicone/PEL/clay奈米複合材料之熱劣解分析…………77 4.4.5 Silicone/PEL/clay 奈米複合材料之機械性質 …………78 4.5 結論 ………78 4.6 參考文獻 …79 第五章 膨潤劑對黏土之膨潤效應及摻混於PU/PEL高分子基材物性之探討…...91 中文摘要 …………..92 英文摘要 ……………93 5.1 前言 ……………94 5.2 實驗 ……………96 5.2.1 材料…………96 5.2.2 有機黏土製備…96 5.2.3 樣品製作 ……96 5.2.4 X-ray 測試………97 5.2.5 擺錘流變儀測試 ……………97 5.2.6 動態機械性質分析……………97 5.2.7 TGA分析 ………………… 97 5.2.8 機械性質測試……………97 5.3 結果與討……………………98 5.3.1 PU/PEL/Clay奈米複合材料之層間距離 …98 5.3.2 PU/PEL/Clay奈米複合材料之硬化行為探討…100 5.3.3 PU/PEL/Clay奈米複合材料之分子間相互作用力…101 5.3.4 PU/PEL/Clay奈米複合材料之熱劣解分析 …101 5.3.5 PU/PEL/Clay奈米複合材料之機械性………101 5.4 結論… ……………………………102 5.5 參考文獻…………………………103 第六章 奈米黏土改質PU/PEL掺合膠之動態性質防振及防振性能之研究................114 中文摘要……………………………115 英文摘要………… ………………116 6.1 前言…………………………117 6.2 實驗………………………117 6.2.1 材料…………………………117 6.2.2 有機黏土製備………………119 6.2.3 試片製作 ………………119 6.2.4 X-ray 測試 ……………119 6.2.5 動態機械分析 ………120 6.2.6 靜態壓縮彈性係數(ks)之測定………120 6.2.7 遲滯現象之測定………………………120 6.2.8 防振製品動態性質試驗方法…………121 6.3 結果與討論………………………………122 6.3.1 PU/PEL/Clay奈米複合材料之層間距 …120 6.3.2 PU/PEL/Clay奈米複合材料之機械性質 …124 6.3.3 PU/PEL/Clay奈米複合材料之動態機械性質分析 ……125 6.3.4 PU/PEL/Clay奈米複合材料之遲滯效應 …125 6.3.5 PU/PEL/Clay奈米複合材料之制振效應 ……126 6.3.6 PU/PEL/Clay奈米複合材料之動態性質之防振性能分析 …...................126 6.4 結論………………………127 6.5 參考文獻…………………128 第七章 總結論………………145 作者簡介………………………148 著作目錄………………………149 圖 表 索 引 圖1-1 鋰離子在高分子電解質中之傳導行為…………………… 6 圖1-2 導電高分子材料之電荷傳導示意圖……………………… 6 圖2-1 System of the instrument……………………………… 38 圖2-2 Curing behavior a type by rigid-body pendulum rehomete...............................................38 圖2-3 The curing behavior of temperature on (a)80℃, (b)100℃, (c)120℃ of Silicone........................... 39 圖2-4 The temperature curing behavior on 150℃ of silicone/PEL blends with PEL contents…………………… 39 圖2-5 Differential Scanning Caiorimetry curves of Silicone/PEL blends with PEL contents…… ……………… 40 圖2-6 The evaluated by FTIR of silicone/PEL blends with PEL contents ………………………………………………… 40 圖2-7 The silicone/PEL blends stress with PEL content ……………….......................................... 41 圖2-8 The Silicone/PEL blends strain with PEL content ……………….......................................... 41 圖2-9 The silicone/PEL blends hardness with PEL content ……………............................................ 42 圖2-10 The temperature on tanδ silicone/PEL blends effect with PEL contents at 1Hz………………………………………42 圖2-11 The temperature on tanδ of Ppy on silicone surface effect at 1Hz. (Si-Ppyx, x: dip-coating times of Ppy)………............................................... 43 圖2-12 The temperature on tanδ of Ppy on SP10 blends surface at 1 Hz………………………………………………… 43 圖2-13 silicone/PEL blends with PEL contents (×1000): (a)silicone、(b)SP05、(c)SP10、(d)SP15、(e)SP20………………..................................... 44 圖2-14 Scanning electron micrographs of Ppy on silicone surfaces (×1000):(a)Si-Ppy1、(b)Si-Ppy2、(c)Si-Ppy3、(d)Si-Ppy4…………………………………………………………… 45 圖2-15 Scanning electron micrographs of Ppy on SP10 surfaces(×1000):SP-Ppy1、(b)SP-Ppy2、(c)SP-Ppy3、(d)SP-Ppy4…………..........................................46 圖3-1 System of the intrusmentnt………………………… 60 圖3-2 Curing behavior a type by rigid-body pendulum rehometer……….......................................60 圖3-3 The curing process of temperature on (a)80℃, (b)100℃,(c)120℃ of silicone ………………………………… 61 圖3-4 Curing process of temperature on 120℃ (a) SP05, (b) SP10, (c) P15………………………………………………61 圖3-5 Surface resistance of silicone/PEL blends with PEL contents at 27℃…………………………………………………62 圖3-6 Surface resistance of Ppy varied soaking on silicone surfaces at 27℃…………………………………………………62 圖3-7 Surface resistance of Ppy varied soaking on SP10 surfaces at 27℃…………………………………………………63 圖3-8 Surface resistance of silicone with carbon black contents at 27℃…………………………………………………63 圖3-9 Surface resistance of SP10 with carbon black contents at 27℃…………………………………………………64 圖3-10 Dielectric constant of frequency:Silicone, SP10, Si-Ppy2, SP10-Ppy2, Si-CB20, SP10-CB20……………………64 圖3-11 Loss factor of frequency:Silicone, SP10, Si-Ppy2, SP10-Ppy2, Si-CB20, SP10-CB20…………… …………………65 圖3-12 Dielectric constant-Surfaces resistivity responses: Silicone, SP10, Si-Ppy2, SP10-Ppy2, Si-CB20, SP10-CB20 at 10 MHz…………………………………………………………65 圖3-13 Loss factor-Surfaces resistivity responses:Silicone, SP10, Si-Ppy2, SP10-Ppy2, Si-CB20, SP10-CB20 at 10 MHz………......................................... 66 圖4-1 System of the instrument…………………………… 82 圖4-2 The curing behavior a type by rigid-body pendulum rehometer............................................82 圖4-3 XRD patterns of silicone/clay and PEL/clay composites…………...................................83 圖4-4 XRD patterns of SP/clay composites containing various clay concentrations (wt\\\%)……………………… 83 圖4-5 Structure of SP/clay composites……………………84 圖4-6 XRD patterns of SP/Oc composites containing various Oc concentrations (wt\\\%)…… ……………………………… 84 圖4-7 Structure of SP/Oc composites………………………85 圖4-8 The curing behavior of temperature on 150℃:(a) SP (b) SP-CTAB2wt\\\%, (c)SP-CTAB4wt\\\%......................85 圖4-9 The curing times variation of SP/clay composites… 86 圖4-10 The effect of temperature on damping (tanδ) of SP/clay composites………………………………………………86 圖4-11 The effect of temperature on damping (tanδ) of SP/Oc composites…………………………………………………87 圖4-12 The Tgα variation of SP/clay composites…………87 圖4-13 The TGA curves of SP/clay composites ………… 88 圖4-14 Tensile strength of SP blends with various clay and Oc content……………………………………………………88 圖4-15 Elongation at break of SP blends with different clay and Oc content……………………………………………89 圖5-1 XRD patterns of organophilic clays:Clay, CTAB-OC, DDAC-OC, DDAB-OC……………………………………………… 104 圖5-2 XRD patterns of clay in various polymer:mPU/Clay, PEL/Clay, PU/Clay…………………………………………… 104 圖5-3 The d-spacing of mPU/clay hybrids containing various organophilic clay concentrations (wt\\\%):mPU/Clay, mPU/CTAB-OC, mPU/DDAC-OC, mPU/DDAB-OC………………… 105 圖5-4 Structure of layered clay………………………… 105 圖5-5 Structure of organoclay…………………………… 106 圖5-6 Structure of PU/clay composites………………… 106 圖5-7 Structure of PEL/clay composites……………… 107 圖5-8 Structure of mPU/organoclay composites…………107 圖5-9 System of the instrument……………………………108 圖5-10 Change of vibration wave in curing process… 108 圖5-11 The PU/PEL blends curing behavior………………109 圖5-12 The curing time of mPU/Clay blends with various clay and CTAB-OC content………………………..........109 圖5-13 The Tg of mPU/clay blends with various clay and CTAB-OC content………………………………………………110 圖5-14 The TGA curves of mPU blends with various clay and CTAB-OC content………………………………………………110 圖5-15 The stress of mPU/Clay blends with various clay and CTAB-OC content………………………………………………111 圖5-16 The strain of mPU/clay blends with various clay and CTAB-OC content………………………………………………111 圖6-1 Specimen in compression………………………… 103 圖6-2 A typical hysteresis loop specimen……………130 圖6-3 A typical hystersis damping curve……………… 131 圖6-4 The state of load waves and displacement………131 圖6-5 The state of load-displacement curve……………132 圖6-6 XRD patterns of organophilic clays:Clay, CTAB-OC, DDAC-OC, DDAB-OC………………………………………………132 圖6-7 XRD patterns of clay in various polymer:mPU/Clay, PEL/Clay, PU/Clay…………………………………………… 133 圖6-8 The d-spacing of mPU/clay hybrids containing various organophilic clay concentrations (wt\\\%):mPU/Clay, mPU/CTAB-OC, mPU/DDAC-OC, mPU/DDAB-OC………………… 134 圖6-9 Structure of layered clay………………………… 134 圖6-10 Structure of modified-clay……………………… 135 圖6-11 Structure of PU/clay nanocomposite…………… 135 圖6-12 Structure of PEL/clay nanocomposites………… 136 圖6-13 Structure of mPU/organoclay nanocomposites… 136 圖6-14 The compression stiffness of mPU hybrids containing various clay and CTAB-OC content…………………………137 圖6-15 The Hardness of mPU hybrids containing various clay and CTAB-OC content…………………………………………137 圖6-16 The effect of temperature on damping(tanδ) of mPU hybrids containing various clay content………………137 圖6-17 The effect of temperature on damping(tanδ) of mPU hybrids containing various CTAB-OC content…………138 圖6-18 The effect of clay and CTAB-OC content on the hysteresis loops of mPU/clay hybrids:(a) mPU (b) clay2wt\\\%, (c) clay6wt\\\%, (d) clay10wt\\\%, (e) CTAB-OC2wt\\\%, (f) CTAB-OC6wt\\\%, (g) CTAB-OC10wt\\\%. The compression loading was 20kg (f=1Hz, amplitude=2mm)…………………………139 圖6-19 The ΔW(N-m) of mPU/clay hybrids containing various clay and CTAB-OC content…………………………………………140 圖6-20 The hysteresis damping curves of mPU/clay hybrids containing various clay and CTAB-OC content (wt\\\%): (a) mPU (b) clay2wt\\\%, (c) clay6wt\\\%, (d) clay10wt\\\%, (e) CTAB-OC2wt\\\%, (f) CTAB-OC6wt\\\%, (g) CTAB-OC10wt\\\%............................................141 圖6-21 The β of mPU/clay hybrids containing various clay and CTAB-OC content…………………………………………… 142 圖6-22 The loading dynamic ratio and tanδof mPU/clay hybrids with various clay and CTAB-OC content…………………142 表1-1 國內防振材料文獻回顧…………………………………8 表1-2 國外防振材料文獻回顧…………………………………9 表2-1 The Compositions of Silicone/PEL blends with…37 表2-2 Curing real time of silicone/PEL blends……… 37 表2-3 The glass transition temperature of Silicone /PEL blends……..........................................37 表3-1 The compositions of silicone/PEL blends with PEL contents (wt\\\%)…………………………………………………59 表3-2 Curing real time of silicone/PEL blends……… 59 表3-3 Energy dispersive x-ray spectrometer of permeate depth of Ppy on silicone and SP10 blends surfac……59 表4-1 The compositions of SPC and SPOc composites with clay contents (wt \\\%)…………………………………………81 表6-1 The dynamic properties of anti-vibration performance ........................................129

    參考文獻
    第一章
    1.Terutaka Tamai, IEEE Transactions on Components, Hybrids and Manufacturing Technology, 1981, 5, 1, 56.
    2.Stern, H. Electronic Packaging Prod 1980, 20, 7, 237.
    3.Kost, J.; Narkis, M.; Foux, A. Polym Eng Sci 1983, 23, 10, 567.
    4.Kost, J.; Narkis, M.; Foux, A. J Appl Polym Sci 1984, 29, 3937.
    5.Kost, J.; Narkis, M.; Foux, A. Polym Eng Sci 1994, 34, 21 1628.
    6.Poole, D. R. Plast Eng 1978, 34, 6, 25.
    7.Wang, X.; Yoshimura, N. J Appl Phys 1999, 38, 5170.
    8.Lu, X.; Xu, G.; Hofstra, P. G.; Bajcar, R. C. J Poly Sci Part B: Polym Phys 1998, 36 2259.
    9.Gan, L. H.; Gan, Y. Y.; Yin, W. S. Polym 1999, 40, 4035.
    10. Tuyen, L. T. T.; Potje-Kamloth, K.; Liess, H. D. Thin Solid Film 1997, 292, 293.
    11. Kim, N. Y.; Laibinis, P. E. J Am Chem Soc 1999, 121, 7162.
    12. Lee, H. S.; Yan, X. Q.; Xiang, C.; McBreen, J.; Callahan, J. H.; Choi, L. S. J Electrochem Soc 1999, 146, 3, 941.
    13. Killis, A.; Cheradame, H.; Gandini, A.; Lenest, J. F.; Cohen, J. P. Solid State Ionics 1984, 14, 3, 231. J. Kost, M. Narkis,A. Foux, J. Appl. Polym. Sci., 1984, 29, 3937.
    14. T. Ito, H. Shirakawa, S. Ikeda, Journal of Polymer Science, Polymer Chemistry Edition, 1974, 12, 1,11.
    15. T. Ito, H. Shirakawa, S. Ikeda, Journal of Polymer Science, Polymer Chemistry Edition, 1975, 13, 8,1943.
    16.H. Shirakawa, S. Ikeda, Journal of Polymer Science, Polymer Chemistry Edition, 1974 12, 5, 929.
    17.K. K. Kanazawa, A. F. Diaz, W. D. Gill, P. M. Grant, G. B. Street, Gian Piero Gardini, J. F. Kwak, Synthetic Metals, 1979, 1, 3,329.
    18. T. Yoshikawa, Polymer Journal, 1990, 22, 1.
    19. K. Yoshino, Trans. of IEE of Japan, 1992, 112-A, 8.
    20. R. Qian and Y. Chen, Proceeding, Plastics Conference, The Plastics & Rubber Institute, Singapore, (1986).
    21. T. Ojio and S. Miyata, Nippon Kagaku Kaishi, 1986, 3, 348.
    22. T. Ojio and S. Miyata, Polymer Journal, 1986, 18, 1, 95.
    23. A. Pron, M. Zagorska, W. Fabianowski, J. B. Raynor and S. Lefrant, Polym. Commun., 1987, 28, 193.
    24. A. Pron, W. Fabianowski, J. B. Raynor, S. Lefrant and G. Fatseas, Synth. Met., 1987, 18, 49.
    25. R. Yosomiya, M. Hirata, Y. Haga, H. An and M. Seki, Macormol. Chem., Rapid Commun., 1986, 7, 697.
    26. R. Sugimoto, H. B. Gu, S. Hayashi and K. Yoshino, Synth. Met., 1987, 18, 247.
    27. T. Tamamura, Zairyo Gijutsu, 1985, 3, 3, 139.
    28. P. Aldebert, P. Audebert, M. Armand, G. Bidan, M. Pineri, J. Chem. Soc., Chem. Commun., 1986, 22, 1636.
    29. H. T. Chiu, J. S. Lin and C. M. Huang, J. of applied Electrochemistry, 1992, 22, 358.
    30. H. T. Chiu, J. S. Lin and J. N. Shiau, J. of Applied Electrochemistry 1992, 22, 522.
    31. H. T. Chiu, J. S. Lin and C. M. Huang, J. of Applied Electrochemistry, 1992, 22, 528.
    32. H. T. Chiu, C. M. Huang and J. S, Lin, CAPPCON Proceedings, Houston, Texas, 1987, 22.
    33. H. T. Chiu, J. S. Lin, J. of Materials Science, 1992, 27, 319.
    34. H. T. Chiu, J. H. Wang, J. Chine. Insti. Text. Eng. 1995, 13, 2, 53.
    35. H. T. Chiu, J. H. Wang, Chinese Material Science, 1995, 27, 4, 249.
    36. J. S. Lin, H. T. Chiu, Polymer & Polymer Coposites., 2001, 9, 5,1.
    37. H. T. Chiu, J. H. Wang, Polymer Composites, 1998, 19, 347.
    38. H. T. Chiu, J. H. Wang, J. of Applied Polym. Sci., 1998, 68, 1387.
    39. N. Y. Kim, P. E. Laibinis, J. Am. Chem. Soc., 1999, 121, 7162.
    40. A. I. Medalia, Rubber Chem. Technol., 1986, 59, 432
    41. M. H. Polley, B. B. Boonstra, Rubber Chem. Technol., 1957, 30, 170.
    42. K. G. Princy, Rani Joseph, C. Sudha Kartha, J. Appl. Polym. Sci., 1998, 69, 1043.
    43. J. Kost, M. Narkis,A. Foux, Polym. Eng. and Sci., 1983, 23, 10, 567.
    44. J. Kost, M. Narkis,A. Foux, J. Appl. Polym. Sci., 1984, 29, 3937.
    45. J. Kost, M. Narkis,A. Foux, Polym. Eng. and Sci., 1994, 34, 21, 1628.
    46. L. H. Gan, Y. Y. Gan, W. S. Yin, Polymer, 1999, 40, 4035.
    47.D. E. Feton, J. M. Parke, P. V. Right, 1995, 103, 4745.
    48. James M. Kelly and Edgardo Quiroz, “Mechanical Characteristics of Neoprene Isolation Bearings”, CA: Earthquake Engineering Research Center, University of California at Berkeley, (1992) p.1-4.
    49. H. Oberst, Acustica, Akust. Beih., 1952, 2, 4, 181.
    50. E. M. Kerwin, Jr., J. Acoust. Soc. Am., 1959, 31, 952.
    51. E. E. Ugar, Noise and Vibration Control, L. L. Beranek, ed., McGraw-Hill, New York, 1971.
    52. Huang Weibo and Zhan Fengchang, J. Appl. Polym. Sci., 1993, 50, 277.
    53. J. Oborn, H. Bertilsson, Mikael Rigdahl, J. Appl. Polym. Sci., 2001, 80, 2865.
    54. W. Yamada, S. Shoji, H. Sasakl, A. Nagatanl, K. Yamaguchi, S. Kohjiya and A. S. HashimJ. Appl. Polym. Sci.,1999, 71, 855.
    55. H. H. Law, P. L. Rossiter, L. L. Koss and G. P. Simon, J. Mater. Sci, 1995, 30, 2648.
    56. G. H. Kwak, K. Inoue, Y. Tominaga, S. Asal, M. Sumita, J. Appl. Polym. Sci., 2001, 82, 3058.
    57. Dennis T. H. Wong and H. Leverne Williams, J. Appl. Polym. Sci., 1983, 28, 2187.
    58. S. Yarlagadda and G. Lesieutre, J. Spaceraft and Rockets, 1995, 12, 5, 825.
    59. R. D. Asams and M. R. Maheri, J. Alloys and Compounds, 2003, 355, 126.
    60. D. A. Saravanos and C. C. Chamis, J. Composites Tech. & Res., 1990, 12, 1, 31.
    61. W. Gu, S. L. Kampe, G. Q. Lu, H. F. Wu, J. Mater. Sci., 1998, 33, 5731.
    62. H. T. Chiu, S. H. Chiu, J. H. Wu, G. S. Ger, J. Mater. Sci. Eng., 2001, 33, 4, 200.
    63. T. Hur, J. A. Mason and L. H. Sperling, J. Polym. Sci., Polym. Phys., 1989, 27, 2251.
    64. A. K. Sha’aban, etal. Polymer. Prepr. 1983, 24, 2,130.
    65. B. Hartmann, Polym. News, 1991, 16, 134.
    66. Annakutty Mathew, B. C. Chakraborty and P. C. Deb, J. Appl. Polym. Sci., 1994, 53, 1107.
    67. C. J. Tung and T. C. J. Hsu, J. Appl. Polym. Sci., 1992, 46, 1759.
    68. Q. Chen, H. Ge, D. Chen, X. He and X. Yu, J. Appl. Polym. Sci., 1994, 54, 1191.
    69. M. C. O. Chang, D. A. Thomas and L. H. Sperling, J. Appl. Polym. Sci., 1987, 34, 409.
    70. J. N. Foster and L. H. Sperling, J. Appl. Polym. Sci., 1987, 33, 2637.
    71. H. T. Chiu, D. A. Tsai, W. Y. Chen, G. S. Ger, W. G. Hwang, J. of Chin. Materials Sci., 1998, 30, 1,33.
    72. H. T. Chiu, D. A. Tsai, W. Y. Chen, G. S. Ger, W. G. Hwang, J. of Chin. Materials Sci., 1998, 30, 1, 21.
    73. Hsien-Tang Chiu, Shih-Hsuan Chiu, Jyh-Horng Wu, Guang-Shyang Ger, Journal of Materials Science and Engineering, 2001, 33, 4, 200.
    74. HSIEN-TANG CHIU, SHIH-HSUAN CHIU, JYH-HORNG WUA, J. Appl. Polym. Sci., 2003, 89, 958.
    75. 謝國煌、陳原振,聚胺酯系阻尼材料之研究,國立台灣大學化學工程研究所博士論文,民國84年。
    76. 謝國煌、陳原振,聚胺酯系阻尼材料之研究,國立台灣大學化學工程研究所碩士論文,民國78年。
    77. 謝國煌、李士騰,聚胺酯/環氧樹脂互穿型高分子網狀結構之複合材料研究,國立台灣大學化學工程研究所碩士論文,民國78年。
    78. 馬振基、龔昱嘉,聚氨基甲酸酯/不飽和聚酯之互穿型網狀結構材料之研究,國立清華大學化學工程研究所碩士論文,民國78年。
    79. 黃忠信、張文瑞,乙烯丙烯二烯橡膠之力學行為研究,國立成功大學土木工程研究所碩士論文,民國84年。
    80. 許子健、廖福森,高分子夾層對積層材料制振特性之影響,國立中山大學材料科學(工程)研究所博士論文,民國81年。
    81. 鄭如中、石燕鳳,含膨脹型活性碳阻燃劑之環氧樹脂/不飽和聚酯互穿網狀型高分子材料之研究,國立中興大學化學工程系博士論文,民國81年。
    82. 宋博厚、梁明羽,寬頻抗震水性環氧樹脂材料開發,輔仁大學化學系碩士論文,民國91年。
    83. 宋博厚、李小林,奈米黏土補強環氧樹脂寬頻抗震材料研究,輔仁大學化學系碩士論文,民國91年。
    84. 宋博厚、陳士平,寬頻抗震環氧樹脂結構材料之研究,輔仁大學化學系碩士論文,民國87年。
    85. 盧煉元、曾旭玟,高分子材料於結構隔震技術之應用,國立高雄第一科技大學營建工程所碩士論文,民國92年。
    86. 朱侯憲、李誌明,醋酸乙烯酯與丙烯酸丁酯共聚物之制震材料性質研究,逢甲大學化學工程學系碩士論文,民國89年。
    87. 郭文雄、尤介男,三次元正交型碳/環氧樹脂複合材料之製程與破損分析,逢甲大學化學工程學系碩士論文,民國87年。
    88. A. Akelah, A. Moet, J. Appl. Polym. Sci: Appl. Polym. Symp, 1994, 55, 153.
    89. Giannelis EP, Adv. Mater., 1996, 8, 29.
    90. M. Alexandre, P. Dubois, Mater. Sci. Engng., 2000, 28, 1.
    91. Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, T. Kurauchi, O. Kamigatio, J. Polym. Sci. Pol. Chem., 1993, 31, 1755.
    92. A. Usuki, Y. Kojima, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, O. Kamigatio, J. Mater. Res., 1993, 8, 1179.
    93. M. A. Osman, P. Michael, U. W. Suter, Journal of Materials Chemistry, 2003, 13, 9, 2359.
    94. T. J. Pinnavaia, T. Lan, P. D. Kaviratna, M. S. Wang, Journal of Engineering and Applied Science, 1994, 346, 81.
    95. X. Fu, S. Qutubuddin, Materials Letters,2000, 42, 12.
    96. X. Fu, S. Qutubuddin, Polymer, 2001, 42, 807.
    97. C. C. Ma, C. T. Kuo, H. C. Kuan, C. L. Chiang, Journal of Applied Polymer Science, 2003, 88, 7, 1686.
    98. Z. Wang and T. J. Pinnavaia, Chem. Mater., 1998, 10, 3769.
    99. C. Zilg, R. Thomann and R. Mulhaupt, Adv. Mater., 1999, 11, 49.
    100. T. K. Chen, Y. I. Tien and K. H. Wei, J. Appl. Polym. Sci. A: Polym. Chem., 1999, 37, 2225.
    101. T. K. Chen, Y. I. Tien and K. H. Wei, Polymer, 2000, 41, 1345.
    102. D. Shia, C. Y. Hui, S. D. Burnside and E. P. Giannelis, Polymer Composites, 1998, 19, 608.
    103. R. J. Xu, E. Manias, A. J. Snyder and J. Runt, Macromolecules, 2001, 34, 337.
    104. Y. I. Tien and K. H. Wei, Macromolecules, 2001, 34, 9045.
    105.K. J. Yao, M. Song, D. J. Hourston and D. Z. Lub, Polymer, 2002, 43, 1017.

    第二章
    1.S. M. Ohiberg, L. E. Alexander, E. L. Warrick, J. Polym. Sci., 27, (1958) 1.
    2. K. E. Polmantee, M. J. Hunter, J. Appl. Polym. Sci., 1, (1959) 3.
    3. E. M. Hagerman, J. Appl. Polym. Sci., 13, (1969) 1873.
    4. M. Matsuo, Y. Kondo, Polym. Eng. Sci., 10, (1970) 253.
    5. K. E. Polmanteer, Rubber Chem. Technol., 54, (1981) 1051.
    6. W. S. Yin, H. W. Liu, L. H. Gan, J. Appl. Polym. Sci., 72, 1 (1999) 95.
    7. C. Eaborn ,”Organosilicon compound”, Butter Worths scientific plublication. Londom, (1962) p.100.
    8. W. Noll, ”Chemistry and Technology of Siloxanes”, Acedemic Press, New York, (1968) p.17
    9. C. K. Chiang, Polymer Commun., 22, (1981) 1454.
    10. A. Hooper, J. M. North, Solid State Ionics, 9&10, (1983) 1161.
    11. M. Gauthier, D. Fauteux, G. Vassort, A. Belanger, M. Duval, P. Ricoux, J. M. Chabagno, D. Muller, P. Rigaud, M. B. Armand, D. Deroo, This Journal, 132, (1985) 1333.
    12. T. A. Skotheim, O. Inganas, ibid., 132, (1985) 2116.
    13. K. M. Abraham, M. Alamgir, S. J. Perrotti, ibid., 135, (1988) 535.
    14. K. West, B. Zachau-Christiansen, T. Jacobsen, S. Atlung, ibid., 132, (1985) 3061.
    15. M. Satoh, K. Kaneto, K. Yoshino, Synth. Met., 14 (1986) 289.
    16. A. F. Diaz, K. K. Kanazawa, J. Chem. Soc., Chem. Commun., 635 (1979).
    17. A. F. Diaz, B. Hall, IBM J. Res Dev., 27, 4 (1983) 342.
    18. A. I. Medalia, Rubber Chem. Technol., 59, (1986) 432.
    19. M. H. Polley, B. B. Boonstra, Rubber Chem. Technol., 30, (1957) 170.
    20. K. G. Princy, Rani Joseph, C. Sudha Kartha, J. Appl. Polym. Sci., 69, (1998) 1043.
    21. J. Kost, M. Narkis,A. Foux, Polym. Eng. and Sci., 23, 10, (1983) 567.
    22. J. Kost, M. Narkis,A. Foux, J. Appl. Polym. Sci., 29, (1984) 3937.
    23. J. Kost, M. Narkis,A. Foux, Polym. Eng. and Sci., 34, 21, (1994) 1628.
    24. L. H. Gan, Y. Y. Gan, W. S. Yin, Polymer, 40, (1999) 4035.
    25. N. Y. Kim, P. E. Laibinis, J. Am. Chem. Soc., 121, (1999) 7162.
    26. Tanaka, Coating films evaluation of physical property, Ricogaka Publish 1993.
    27.T. Tanaka, “Proceedings of The International Pressure Sensitive Adhesive Technoforum”, Japan, (1997) p.143.

    第三章
    1. Ohiberg, S. M.; Alexander L. E.; Warrick, E. L. J Polym Sci 1958, 27, 1.
    2. Polmantee, K. E.; Hunter, M. J. J Appl Polym Sci 1959, 1, 3.
    3. Hagerman, E. M. J Appl Polym Sci 1969, 13, 1873.
    4. Matsuo, M.; Kondo, Y. Polym Eng Sci 1970, 10, 253.
    5. Polmanteer, K. E. Rubber Chem Technol 1981, 54, 1051.
    6. Yin, W. S.; Liu, H. W.; Gan, L. H. J Appl Polym Sci 1999, 72, 1, 95.
    7. Eaborn, C. Organosilicon compound; Butterworths: Londom, 1962; p 100.
    8. Noll, W. Chemistry and Technology of Siloxanes; Acedemic: New York, 1968; p 17
    9. Terutaka Tamai, IEEE Transactions on Components, Hybrids and Manufacturing Technology, 1981, 5, 1, 56.
    10. Stern, H. Electronic Packaging Prod 1980, 20, 7, 237.
    11. Kost, J.; Narkis, M.; Foux, A. Polym Eng Sci 1983, 23, 10, 567.
    12. Kost, J.; Narkis, M.; Foux, A. J Appl Polym Sci 1984, 29, 3937.
    13. Kost, J.; Narkis, M.; Foux, A. Polym Eng Sci 1994, 34, 21 1628.
    14. Poole, D. R. Plast Eng 1978, 34, 6, 25.
    15. Wang, X.; Yoshimura, N. J Appl Phys 1999, 38, 5170.
    16. Lu, X.; Xu, G.; Hofstra, P. G.; Bajcar, R. C. J Poly Sci Part B: Polym Phys 1998, 36 2259.
    17. Gan, L. H.; Gan, Y. Y.; Yin, W. S. Polym 1999, 40, 4035.
    18. Tuyen, L. T. T.; Potje-Kamloth, K.; Liess, H. D. Thin Solid Film 1997, 292, 293.
    19. Kim, N. Y.; Laibinis, P. E. J Am Chem Soc 1999, 121, 7162.
    20. Lee, H. S.; Yan, X. Q.; Xiang, C.; McBreen, J.; Callahan, J. H.; Choi, L. S. J Electrochem Soc 1999, 146, 3, 941.
    21. Killis, A.; Cheradame, H.; Gandini, A.; Lenest, J. F.; Cohen, J. P. Solid State Ionics 1984, 14, 3, 231.
    22. Satoh, M.; Kaneto, K.; Yoshino, K. Synth Met 1986, 14, 289.
    23. Diaz, A. F.; Kanazawa, K. K. J Chem Soc Chem Commun 1979, 14, 635.
    24. Diaz, A. F.; Hall, B. IBM J Res Dev 1983, 27, 4, 342.
    25. Tanaka, T. Coating Films Evaluation of Physical Property; Ricogaka: Japan, 1993.
    26. Tanaka, T. Proceedings of the International Pressure Sensitive Adhesive Technoforum; Tokyo, Japan, 1997, 143.

    第四章
    1. Yno, A. Usuki, A. Okada, T. Kurauchi and O. Kamigaito, J. Polym. Sci. Polym. Chem., 31, 2493 (1993).
    2. K. Yano, A. Usuki and A. Okada, J. Polym. Sci. Polym. Chem., 35, 2289 (1997).
    3. K. J. Yao, M. Song, D. J. Hourston and D. Z. Luo, Polymer, 43, 1017 (2002).
    4. S. M. Ohiberg, L. E. Alexander and E. L. Warrick, J. Polym. Sci., 27, 1 (1958).
    5. K. E. Polmantee and M. J. Hunter, J. Appl. Polym. Sci., 1, 3 (1959).
    6. E. M. Hagerman, J. Appl. Polym. Sci., 13, 1873 (1969).
    7. M. Matsuo and Y. Kondo, Polym. Eng. Sci., 10, 253 (1970).
    8. K. E. Polmanteer, Rubber Chem. Technol., 54, 1051 (1981).
    9. C. Eaborn, Organosilicon compound, Butter Worths scientific plublication. londom, 1962.
    10. W. Noll, Chemistry and Technology of Siloxanes, Acedemic Press, New York, 1968.
    11. C. K. Chiang, Polym. Commun., 22, 1454 (1981).
    12. A. Hooper and J. M. North, Solid State Ionics, 9&10, 1161 (1983).
    13. M. Gauthier, D. Fauteux, G. Vassort, A. Belanger, M. Duval, P. Ricoux, J. M. Chabagno, D. Muller, P. Rigaud, M. B. Armand and D. Deroo, This Journal, 132, 1333 (1985).
    14. T. A. Skotheim and O. Inganas, Journal of the Electrochemical Society, 132, 2116 (1985).
    15. K. M. Abraham, M. Alamgir and S. J. Perrotti, Journal of the Electrochemical Society, 135, 535 (1988).
    16. K. West, B. Zachau-Christiansen, T. Jacobsen and S. Atlung, Journal of the Electrochemical Society, 132, 3061 (1985).
    17. A. I. Medalia, Rubber Chem. Technol., 59, 432 (1986).
    18. M. H. Polley and B. B. Boonstra, Rubber Chem. Technol., 30, 170 (1957).
    19. K. G. Princy, Rani Joseph and C. Sudha Kartha, J. Appl. Polym. Sci., 69, 1043 (1998).
    20. J. Kost, M. Narkis and A. Foux, Polym. Eng. and Sci., 23, 10, 567 (1983).
    21. J. Kost, M. Narkis and A. Foux, J. Appl. Polym. Sci., 29, 3937 (1984).
    22. J. Kost, M. Narkis and A. Foux, Polym. Eng. and Sci., 34, 21, 1628 (1994).
    23. P. C. Sharma, K. A. Nair and K. Ajanta, Transactions of the Annual Meeting of the Society for Biomaterials in conjunction with the International Biomaterials Symposium, 7, 100 (1984).
    24. H. W. Cheng and F. C. Chang, Polymer, 42, 9763 (2001).
    25. H. W. Cheng, C. Y. Chiu and F. C. Chang, J. of Polym. Sci.: Part B: Polym. Phys., 40, 1342 (2002).
    26. Emmanuel P. and Giannelis, Adv. Mater., 8, 1, 28 (1996).
    27. Viaia, Richard A., Vasudevan, S., Krawiec, Wlodzimierz., Scanlon, Lawrence G., Giannelis and Emmanuel P., Adv. Mater., 7, 2, 154 (1995).
    28. Y. H. Hyun, S. T. Lim, H. J. Choi and M. S. John, Macromolecules, 34, 23, 8084 (2001).
    29. T. Tanaka, Coating films evaluation of physical property, Ricogaka Publish, 1993.
    30. T. Tanaka, Proceedings of The International Pressure Sensitive Adhesive Technoforum, Japan, 1997.
    31. M. A. Lopez-Manchado, M. Arroyo, B. Herrero and J. Biagiotti, J. Appl. Polym. Sci., 89, 1 (2003).
    32. E. M. Wco,J. W. Bariow and D. R.Paul, Polymer, 26, 763 (1985).
    33. D. R. Paul and S. Newman, Polymer Blends, Academic Press, New York, 1978.
    34. F. C. Nelson, The Shock and Vibration Digest, 26, 1, 24 (1995).

    第五章
    1.P. M. Subramanian, Polym. Eng. Sci., 25, 483 (1985).
    2.P. M. Subramanian, Polym. Eng. Sci. 27, 663 (1987).
    3.A. K. Gupta and S. N. Purwar, J. Appl. Polym. Sci., 29, 1595 (1984).
    4.S. Y. Kienzle, ”Alloy and Blends:Tying Properties to Markets”, Plastices Engineering, 1987, p.41.
    5.L. A. Utracki, Polym. Eng. Sci., 22, 17, 1166 (1982).
    6.A. K. Sha’aban, etal. Polymer. Prepr., 24, 130 (1983).
    7.C. K. Chiang, Polym. Commun., 22, 1454 (1981).
    8.A. Hooper and J. M. North, Solid State Ionics, 9&10, 1161 (1983).
    9.M. Gauthier, D. Fauteux, G. Vassort, A. Belanger, M. Duval, P. Ricoux, J. M. Chabagno, D. Muller, P. Rigaud, M. B. Armand and D. Deroo, This Journal, 132, 1333 (1985).
    10.T. A. Skotheim and O. Inganas, Journal of the Electrochemical Society, 132, 2116 (1985).
    11.K. M. Abraham, M. Alamgir and S. J. Perrotti, Journal of the Electrochemical Society, 135, 535 (1988).
    12.K. West, B. Zachau-Christiansen, T. Jacobsen and S. Atlung, Journal of the Electrochemical Society, 132, 3061 (1985).
    13.B. K. Kim, J. W. Seo, H. M. Jeong, European Polymer Journal, 39, 85 (2003).
    14.J. Ma, S. Zhang, Z. Qi, J. Appl. Polym. Sci., 82, 1444 (2001).
    15.K. J. Yao, M. Song, D. J. Hourston, D. Z. Luo, Poolymer, 43, 1017 (2002).
    16.T. K. Cheng, Y. I. Tien, K. H. Wei, Polymer, 41, 1345 (2000).
    17.J. H. Chang, Yeong Uk An, Journal of Polymer Science: Part B: Polymer Physics, 40, 670 (2002).
    18.X. Zhang, R. Xu, Z. Wu, C. Zhou, Polymer International, 52, 790 (2003).
    19.M. Tortora, G. Gorrasl, V. Vittoria, G. Galli, S. Ritrovati, E. Chiellini, polymer, 43, 6147 (2002).
    20.Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, T. Kurauchi, O. Kamigatio, J. Polym. Sci. Pol. Chem., 31, 1755 (1993).
    21.A. Usuki, Y. Kojima, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, O. Kamigatio, J. Mater. Res., 8, 1179 (1993).
    22.M. A. Osman, P. Michael, U. W. Suter, Journal of Materials Chemistry, 13, 9, 2359 (2003).
    23.T. J. Pinnavaia, T. Lan, P. D. Kaviratna, M. S. Wang, Journal of Engineering and Applied Science, 346, 81 (1994).
    24.X. Fu, S. Qutubuddin, Materials Letters, 42, 12 (2000).
    25.X. Fu, S. Qutubuddin, Polymer, 42, 807 (2001).
    26.C. C. Ma, C. T. Kuo, H. C. Kuan, C. L. Chiang, Journal of Applied Polymer Science, 88, 7, 1686 (2003).
    27.H. W. Cheng, F. C. Chang, Polymer, 42, 9763 (2001).
    28.H. W. Cheng, C. Y. Chiu, F. C. Chang, Journal of Polymer Science: Part B: Polymer Physics, 40, 1342 (2002).
    29.Giannelis, Emmanuel P., Advanced Materials, 8, 1, 28 (1996).
    30.Viaia, Richard A., Vasudevan, S., Krawiec, Wlodzimierz., Scanlon, Lawrence G., Giannelis, Emmanuel P., Advanced Materials, 7, 2, 154 (1995).
    31.Y. H. Hyun, S. T. Lim, H. J. Choi, M. S. John, Macromolecules, 34, 23, 8084 (2001).
    32.H. T. Chiu, J. H. Wu, Journal of Polymer Research, 2004, (Accepted).
    33.T. Tanaka, “Coating films evaluation of physical property”, Ricogaka Publish (1993).
    34.T. Tanaka, “Proceedings of The International Pressure Sensitive Adhesive Technoforum”, Japan, (1997) p.143.

    第六章
    1. T. Hur, J. A. Mason and L. H. Sperling, J. Polym. Sci., Polym. Phys., 1989, 27, 2251.
    2. A. K. Sha’aban, etal. Polymer. Prepr. 24(2), (1983)130.
    3. B. Hartmann, Polym. News, 1991, 16, 134.
    4. J. A. Manson and L. H. Sperling, Polymer Blends and Composites, Plenum Press, New York, 1976.
    5. Huang Weibo and Zhan Fengchang, J. Appl. Polym. Sci., 1993, 50, 277.
    6. Annakutty Mathew, B. C. Chakraborty and P. C. Deb, J. Appl. Polym. Sci., 1994, 53, 1107.
    7. C. J. Tung and T. C. J. Hsu, J. Appl. Polym. Sci., 1992, 46, 1759.
    8. Q. Chen, H. Ge, D. Chen, X. He and X. Yu, J. Appl. Polym. Sci., 1994, 54, 1191.
    9. M. C. O. Chang, D. A. Thomas and L. H. Sperling, J. Appl. Polym. Sci., 1987, 34, 409.
    10. J. N. Foster and L. H. Sperling, J. Appl. Polym. Sci., 1987, 33, 2637.
    11. J. Oborn, H. Bertilsson, Mikael Rigdahl, J. Appl. Polym. Sci., 2001, 80, 2865.
    12. W. Yamada, S. Shoji, H. Sasakl, A. Nagatanl, K. Yamaguchi, S. Kohjiya and A. S. HashimJ. Appl. Polym. Sci.,1999, 71, 855.
    13. H. Oberst, Acustica, Akust. Beih., 1952, 2, 4, 181.
    14. E. M. Kerwin, Jr., J. Acoust. Soc. Am., 1959, 31, 952.
    15. E. E. Ugar, Noise and Vibration Control, L. L. Beranek, ed., McGraw-Hill, New York, 1971.
    16. H. H. Law, P. L. Rossiter, L. L. Koss and G. P. Simon, J. Mater. Sci, 1995, 30, 2648.
    17. G. H. Kwak, K. Inoue, Y. Tominaga, S. Asal, M. Sumita, J. Appl. Polym. Sci., 2001, 82, 3058.
    18. Dennis T. H. Wong and H. Leverne Williams, J. Appl. Polym. Sci., 1983, 28, 2187.
    19. S. Yarlagadda and G. Lesieutre, J. Spaceraft and Rockets, 1995, 12, 5, 825.
    20. R. D. Asams and M. R. Maheri, J. Alloys and Compounds, 2003, 355, 126.
    21. D. A. Saravanos and C. C. Chamis, J. Composites Tech. & Res., 1990, 12, 1, 31.
    22. W. Gu, S. L. Kampe, G. Q. Lu, H. F. Wu, J. Mater. Sci., 1998, 33, 5731.
    23. H. T. Chiu, S. H. Chiu, J. H. Wu, G. S. Ger, J. Mater. Sci. Eng., 2001, 33, 4, 200.
    24. A. K. Sha’aban, etal. Polymer. Prepr. 24(2), 1983, pp 130.
    25. Howard L. Needles, “Hankbook of Textile Fiber, Dyes & Finishes”, Garland Pulishing, New York (1981), pp.144.
    26. C. K. Chiang, Polym. Commun., 22, 1454 (1981).
    27. A. Hooper and J. M. North, Solid State Ionics, 9&10, 1161 (1983).
    28. M. Gauthier, D. Fauteux, G. Vassort, A. Belanger, M. Duval, P. Ricoux, J. M. Chabagno, D. Muller, P. Rigaud, M. B. Armand and D. Deroo, This Journal, 132, 1333 (1985).
    29. T. A. Skotheim and O. Inganas, Journal of the Electrochemical Society, 132, 2116 (1985).
    30. K. M. Abraham, M. Alamgir and S. J. Perrotti, Journal of the Electrochemical Society, 135, 535 (1988).
    31. K. West, B. Zachau-Christiansen, T. Jacobsen and S. Atlung, Journal of the Electrochemical Society, 132, 3061 (1985).
    32. A. Akelah, A. Moet, J. Appl. Polym. Sci: Appl. Polym. Symp, 1994, 55, 153.
    33. Giannelis EP, Adv. Mater., 1996, 8, 29.
    34. M. Alexandre, P. Dubois, Mater. Sci. Engng., 2000, 28, 1.
    35. Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, T. Kurauchi, O. Kamigatio, J. Polym. Sci. Pol. Chem., 31, 1755 (1993).
    36. A. Usuki, Y. Kojima, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, O. Kamigatio, J. Mater. Res., 8, 1179 (1993).
    37. M. A. Osman, P. Michael, U. W. Suter, Journal of Materials Chemistry, 13, 9, 2359 (2003).
    38. T. J. Pinnavaia, T. Lan, P. D. Kaviratna, M. S. Wang, Journal of Engineering and Applied Science, 346, 81 (1994).
    39. X. Fu, S. Qutubuddin, Materials Letters, 42, 12 (2000).
    40. X. Fu, S. Qutubuddin, Polymer, 42, 807 (2001).
    41. C. C. Ma, C. T. Kuo, H. C. Kuan, C. L. Chiang, Journal of Applied Polymer Science, 88, 7, 1686 (2003).
    42. J. A. Brydsom, ”Rubber Materials and their Compounds”, 1988, pp.23.
    43. S. S. Rao, Mechanical Vibration, 2nd Ed., 1990, pp.102.
    44. SRIS 3503, “Testing Methods for Dynamic Properties of Rubber Vibration Isolators for Automobile”, Journal of the Society of Rubber Industry, Japan, 1990, 63, 4, 233.
    45. H. W. Cheng, C. Y. Chiu and F. C. Chang, J. of Polym. Sci.: Part B: Polym. Phys., 40, 1342 (2002).

    QR CODE