簡易檢索 / 詳目顯示

研究生: 林俊安
Jyun-An Lin
論文名稱: 超音波檢測碳纖維貼片補強混凝土構件之研究
A Study on Ultrasonic Wave of Retrofitting Concrete Members Covered with Carbon Fiber Reinforced Polymers
指導教授: 張大鵬
Ta-Peng Chang
口試委員: 謝佑明
Yu-Ming Hsieh
王鶴翔
He-Siang Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 137
中文關鍵詞: 碳纖維貼片超音波衰減值反射比補強
外文關鍵詞: arbon fiber reinforced polymers (CFRP), ultrasonic wave, attenuation loss, reflectivity, retrofit
相關次數: 點閱:243下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究應用數值模擬與實驗方式,探討超音波於碳纖維貼片(CFRP)補強材行為,未來可採現地超音波檢測,評估土木結構物之碳纖維貼片補強品質。碳纖維貼片之超音波衰減特性數值分析,使用2-D平面軸對稱有限元素,單層碳纖維貼片之波傳行為模擬(單層模式),以及表層碳纖維貼片貼附於混凝土基材之波傳行為(雙層模式),改變碳纖維貼片材料性質:楊氏係數(5.0、8.28、12.0 GPa)、容積密度(1,100、1,600、2,100 kg/m3)、卜松比(0.1、0.23、0.3)以及表層碳纖維貼片厚度(1.5、1.75、2.0 mm),並搭配超音波實驗比對數值分析結果。
研究結果顯示:單層碳纖維貼片性質與厚度變化下,反射超音波衰減值落於0.54至4.27 dB之間;楊氏係數影響為最大,衰減值變化幅度為0.74 dB至2.51 dB;卜松比影響為最小,衰減值變化幅度為0.11至1.06 dB;厚度增加衰減值亦增加。碳纖維貼片貼附於混凝土基材時,變化表層材料基本性質與厚度,反射超音波衰減值落於7.75至18.25 dB之間,超音波反射比由0.559降低至0.18,反射超音波衰減值由7.75 dB增至18.85 dB;當超音波衰減值高於11.99 dB時,碳纖維貼片層呈現膠合較為良好;反之當超音波衰減值低於11.36 dB時,可界定為碳纖維貼片層為膠合不佳。表層碳纖維貼片貼附於混凝土基材之超音波實驗,碳纖維貼片之反射超音波衰減平均值變化不大,約為15.33 dB至15.87 dB,實驗衰減值高於數值模擬者約33%。


Numerical simulations and experiments are applied to investigate longitudinal ultrasonic behavior in carbon fiber placement (CFRP) as a retrofitting material. In future, field ultrasonic techniques can be used to evaluate the retrofitting quality of CFRP on civil infrastructures. The numerical analysis of ultrasonic attenuation passing through CFRP uses 2-D plane axisymmetric finite element on single-layered CFRP (single-layered model) and CFRP covering on concrete as a substrate (double-layered model). The effects of Young's moduli (5.0, 8.28, and 12.0 GPa), bulk densities (1,100, 1,600, and 2,100 kg/m3), Poisson’s ratios (0.1, 0.23, and 0.3), and thicknesses (1.5, 1.75, and 2.0 mm) of CFRP are numerically discussed in detail. The ultrasonic experiments on CFRP covering on concrete are executed to identify the numerical results.
Research results are summarized as the following: On single-layered CFRP, reflected attenuation loss values range from 0.54 dB to 4.27 dB for various material properties and thicknesses. A wider attenuation loss variation from 0.74 dB to 2.51 dB is affected by Young’s modulus; instead, a smaller attenuation loss variation from 0.11 dB to 1.06 dB is affected by Poisson’s ratio. On CFRP covering on concrete, reflected attenuation loss values vary from 7.75 dB to 18.85 dB, corresponding reflectivity values from 0.559 to 0.18 for various material properties and thicknesses. When the attenuation loss value is higher than 11.99 dB, the carbon fiber patch glue layer could function relatively well. In contrast, when the attenuation loss value is lower than 11.36 dB, the carbon fiber layer is identified as poor lamination. On ultrasonic experiments in double-layered model, the attenuation loss values of CFRP reveal a low variation from 15.33 dB to 15.87 dB. The experimental attenuation loss values are 33% higher than those from the numerical simulation.

中文摘要Ⅰ 英文摘要Ⅱ 誌謝Ⅲ 總目錄Ⅳ 表目錄Ⅵ 圖目錄Ⅶ 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的 2 1.3 研究內容與流程 3 第二章 文獻回顧 6 2.1 複合材料定義 6 2.2 碳纖維複合材料簡介 6 2.2.1 碳纖維 7 2.2.2 樹脂基材 7 2.2.3 界面 9 2.3 碳纖維複合材料常見缺陷 9 2.4 超音波特性 10 2.4.1 波的種類 11 2.4.2 波的衰減 12 2.4.3 反射與折射 14 2.4.4 音阻抗 14 2.4.5 反射率 15 2.5 常用之超音波檢測種類 16 2.6 非破壞超音波量測 20 第三章 數值模擬 30 3.1 有限元素分析 30 3.1.1 前處理 31 3.1.2 求解 33 第四章 超音波實驗 36 4.1 實驗內容 36 4.2 試驗材料 36 4.2.1 環氧樹脂 36 4.2.2 底漆 36 4.2.3 碳纖維貼片 37 4.2.4 拌合水 37 4.2.5 水泥 37 4.2.6 混凝土試體 37 4.3 試驗儀器與設備 38 4.3.1 試驗模具 38 4.3.2 混凝土拌合機 38 4.3.3 精密電子秤 38 4.3.4 切割機 38 4.3.5 動態共振頻率測定儀 38 4.3.6 對傳式超音波 38 4.3.7 高頻超音波儀器 39 4.4 試驗項目與方法 41 4.4.1 超音波試驗 41 4.4.2 動態彈性模數與動態剪力模數 41 4.4.3 貼附CFRP步驟 42 4.4.4 超音波實驗 44 第五章 結果分析與討論 56 5.1 數值模擬 56 5.1.1 單層版 56 5.1.1.1 容積密度對超音波衰減之影響 56 5.1.1.2 楊氏係數對超音波衰減之影響 57 5.1.1.3 卜松比對超音波衰減之影響 57 5.1.1.4 超音波波速對超音波衰減之影響 57 5.1.1.5 厚度對超音波衰減之影響 58 5.1.2 雙層版 58 5.1.2.1 容積密度對超音波衰減之影響 59 5.1.2.2 楊氏係數對超音波衰減之影響 59 5.1.2.3 卜松比對超音波衰減之影響 60 5.1.2.4 超音波波速對超音波衰減之影響 60 5.1.2.5 厚度對超音波衰減之影響 61 5.1.2.6 反射比對超音波衰減之影響 61 5.1.3 數值模擬結果 62 5.2 實驗-雙層版 62 第六章 結論與建議 101 6.1 結論 101 6.2 建議 104 參考文獻 105

[1] 陳立業、廖文彬、段維新,「複合材料的結構與特性」科學月刊第0283期(1993)
[2] 中華民國結構工程技師公會全國聯合會 編著,「鋼筋混凝土結構修復補強參考手冊」,中華民國結構工程技師公會全國聯合會,(2008)
[3] 吳振隆,「碳纖維高分子複合材料應用於結構補強技術研究及發展」,(2009)
[4] 徐彰志,「複合材料結構之脫層檢測研究」,國立台灣大學應用力學碩士論文,(1999)
[5] 王春山,「環氧樹脂簡介與最近發展(四)」,化工技術,第三卷,第166頁,(1995)
[6] R.D. Adams, and P. Cawley, “A review of defect types and nondestructive testing techniques for composites and bonded joints, NDT International, Vol.21, No.4, p214-218 (1988)
[7] Henry Brown, “Repair of Graphite/Epoxy Composites,” 27th National SAMPE Symposium, p195,table 12.2, (1982)
[8] 李允仲,「音波回音法應用於基樁完整性檢測」,國立成功大學土木工程碩士論文,(2009)
[9] 甘嘉瑋,「超音波檢測技術評估水泥漿體之凝結特性」,國立台灣科技大學營建工程系碩士論文,(2009)
[10] 葉競榮、黃啟貞、陳必貫、吳學文合編,「超音波檢測法」,中華民國非破壞檢測協會,第一章至第五章 ,(1988)
[11] Krautkramer and H. Krautkramer, “Ultrasonic Testing of Materials,” 4th, fully revised edition, Springer-Verlag, (1990)
[12] 蕭家孟,「以應力波檢測混凝土內部鋼筋保護層厚度之研究」,國立中興大學土木工程研究所碩士論文,(1999)
[13] 張獻元,「層狀混凝土版波傳行為與材料性質之探討」,國立台灣科技大學營建工程系碩士論文,(2004)
[14] Kino, G. S., “Acoustic Waves:Device, Imaging, and Analog Singnal Processing,”J. Acoust. Soc. Am., Vol. 71, No.5, pp. 1163-1168, (1982)
[15] Sansalone, M. and W. B., Streett, “Impact-Echo Nondestructive Evaluation of Concrete and Masonry,”ITHACA, N. Y., Bullbrier Press.(1997)
[16] Abdessalem Benammar and Redouane Drai,”Detection of delamination defects in CFRP materials using ultrasonic signal processing,” Ultrasonics Vol. 48, pp.731–738 (2008)
[17] Je-Woong Park and Do-Jung Kim,“Ultrasonic influence of porosity level on CFRP Composite laminates using rayleigh probe waves,“Acta Mechanica Solida Sinica, Vol. 21, No. 4, (2008)
[18] 莊志展,「超音波法量測混凝土結構物表面裂縫開裂深度之應用」,國立屏東科技大學土木工程研究所碩士論文,(1997)
[19] 吳欣翰,「超音波量測混凝土表面開裂深度之應用」,國立屏東科技大學土木工程研究所碩士論文,(1998)
[20] Ohtsu, M., and Yuno, K., “Development of in-situ nondestructive evaluation(nde) techniques for rebar corrosion, concrete deterioration and internal cracks,” Proceedings, ACI International Conference on Evaluation and Rehabilitation of Concrete Structures and Innovations in Design, Vol. 2, pp.893-907, (1991)
[21] Ohtsu, M., and Yuno, K., “Crack evaluation in concrete members based on ultrasonic spectroscopy,” ACI Materials Journal, Vol. 92, pp.686-698 (1995)
[22] Lin, J. M., and Sansalone, M., “Impact-Echo Studies of Interfacial Bond Quality in concrete : Part I-Effect of Unbonded Fraction of Area,” Materials Journal of the American Concrete Institute, Vol.93, No. 2, May-June, pp.223-232 (1996)
[23] Cawley, P. and Adams, R. D., “The mechanics of the coin-tap method of nondestructive testing” , Journal of sound and vibration, Vol 22, No.2, p299-316, NY, Acadenic Press (1988).
[24] Moran, T. J. Crane, R. L. and Andrews, R. J., “Hogh-resolution imaging of microcracks in composites”, Materials Evaluation Vol43,p536-540 (1985)
[25] Bar-Cohen, Y. and Chimenti, D. E., “Nondestructive evaluation of composite laminates by leaky lamb waves”, Review of Progress in Quantitative NDE., Virginia (1985)
[26] Pilarski, A. and Rose, J. L., “A transverse wave ultrasonic oblique incidence technique for interfacial weakness detection in adhesive bonds”, Journal applied physics, Vol63, No.2, p300-307 (1988)
[27] 李世偉,「利用超音波檢測結構物鋁門窗框是否密實」,朝陽科技大學營建工程研究所碩士論文,(2004)
[28] 劉玲、路明坤、張博明,「孔隙率對碳纖維複合材料超聲衰減係數和力學性能的影響」,複合材料科學報,第五期, 二十一卷,(2004)
[29] 宇玉林,「一種測量塑料橡膠類材料聲衰減的脈衝回波方法」,天津冶金,第一百三十二期,(2006)
[30]張彭濤,「碳纖維複合材料分層損傷的超聲坡無損檢測研
究」,東北林葉大學控制理論與控制工程碩士論文,(2006)
[31] 華志但、周曉軍、李凌,「碳纖維複合材料對超聲衰減的頻域分析」,複合材料學報,第二期, 二十三卷,(2006)
[32]張哲維,「環氧樹脂工程性質與修補成效之研究」,國立台灣
科技大學碩士論文,(2009)
[33] 張本地,「剛性鋪面淺層修補之材料特性及維修成效研究」,國立中央大學土木工程系博士論文,(1998)
[34] 段劍、王從科、于波、王浩全、曾光宇「纖維增強複合材料聲學性能檢測方法研究」,測試技術學報,第一期, 十八卷,(2004)

QR CODE