簡易檢索 / 詳目顯示

研究生: 許祐彰
YU-CHANG SHIU
論文名稱: 分子動力學模擬單晶銅奈米溝槽切削及鏡面切削機制之研究
Molecular Dynamics Simulation on Nanogroove Cutting and Mirror Cutting of Single Crystal Copper
指導教授: 林原慶
Yuan-Ching Lin
口試委員: 向四海
Su-Hai Hsiang
呂道揆
none
陳雙源
Shuang-Yuan Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 92
中文關鍵詞: 切削奈米塑性行為溝槽切削鏡面切削分子動力學
外文關鍵詞: Nanogroove Cutting, Mirror Cutting
相關次數: 點閱:177下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文使用分子動力學,模擬鑽石刀具對單晶銅在奈米尺寸下的切削,被切削的單晶銅使用嵌入式(EAM)勢能函數建構其模型,而銅對碳原子間的交互作用則使用二體的Morse勢能函數。
針對不同晶面以及不同方向的溝槽切削加工,探討不同切削條件下材料的滑動系統對溝槽邊幾何形狀的影響;而在高速切削中,則分析奈米鏡面切削的主要機制(Mechanism)。
模擬結果顯示,沿(001)晶面[-100]方向的溝槽切削,其溝槽邊呈現鋸齒狀,且在非切削處因大量差排同時射出而使表面有隆起狀;而(101)晶面[-101]方向的溝槽切削主要滑動面為(111)與(-11-1)晶面,此兩晶面洽好與刀具前進方向平行,若使用夾角120度的V型刀具,理論上可以切出完美的120度V型溝槽;此外,沿(101)晶面[0-10]方向的方形溝槽切削可以達到垂直度最佳的溝槽邊,原因是切削過程中所有滑動系統由(111)晶面主導,沒有其他的滑動系統干擾,故切削結果垂直度最佳,力量最小也較平穩,為三種條件的溝槽切削中溝槽形貌最佳的切削條件。
在奈米切削加工中,可利用高速切削機制來達到完美的加工表面。模擬結果顯示,400m/s到500m/s的切削速度可以達到此鏡面切削機制。過高的速度會因表面熔化層過深而原子黏附在刀腹上,並且週期性脫落在已切削面上使切削過後的表面不佳,過低的速度則表面原子動能過小而無法啟動奈米鏡面切削機制。


This study analyzes nano cutting on single crystal copper with diamond tool by molecular dynamics. The interactions between Cu atoms in the workpiece are described by embedded-atom method(EAM) potential and interactions between Cu atoms and C atoms are described by two body potential.
On different plane and different direction of groove cutting, analyze the effect on the shape of groove edge in various cutting condition. In high cutting speed, analyze the main mechanism on nanometric mirror cutting.
The simulation results show that when the cutting direction is along [-100] direction on (001) plane, the groove edge shows sawtooth and surface on non-cutting place was raised. As the cutting direction is along [-101] direction on (101) plane, the main slip system are (111) plane and (-11-1) plane, if using cutting tool which tool edge is 120 degree, the groove edge of included angle will be ideal 120 degree. The cutting direction is along the [0-10] direction on the (101) plane can cut vertical groove edge, and the cutting force is smaller than other cutting conditions.
In nano cutting process, it can use high cutting speed to complete the ideal workpiece surface. Simulation results show that nano mirror cutting speed range from about 400m/s to 500m/s. Too high or too small cutting speed unable to cut the ideal workpiece surface.

摘要.....................................................I 目錄...................................................III 表索引...................................................V 圖索引..................................................VI 第一章 序論..............................................1 1-1研究動機及目的........................................1 1-2分子動力學理論與文獻探討..............................4 第二章 分子動力學基礎理論................................8 2-1分子動力學的基本假設..................................8 2-2勢能函數..............................................8 2-3運動方程式與演算法...................................12 2-4 Verlet 表列法.......................................15 2-5週期性邊界...........................................16 2-6最小映像法則.........................................16 2-7無因次化.............................................17 2-8 Centrosymmetry參數..................................18 2-9正交切削的假設.......................................19 第三章 模擬步驟與模型建立...............................21 3-1模擬步驟.............................................21 3-1-1初始設定......................................21 3-1-2平衡..........................................23 3-1-3動態模擬......................................24 第四章 結果與討論.......................................26 4-1銅的奈米溝槽切削.....................................26 4-1-1(001)[ ]單晶銅的溝槽切削行為分析..............26 4-1-2(101)[ ]單晶銅的溝槽切削行為分析..............29 4-1-3(101)[ ]單晶銅的溝槽切削行為分析..............32 4-1-4單晶銅不同條件溝槽切削的力量分析..............34 4-1-5單晶銅不同結晶方位溝槽切削的形貌分析..........35 4-2不同切削速度對單晶銅塑性變形以及表面粗糙度的影響.....37 4-3奈米鏡面切削形成機構.................................40 4-3-1奈米鏡面切削機理..............................40 4-3-2不同切削速度對奈米鏡面切削的影響..............41 第五章 結論與建議.......................................43 5-1 結論................................................43 5-2 未來研究方向與建議..................................44 參考文獻................................................45

1. Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller and Edward Teller, “Equation of State Calculations by Fast Computing Machines,” J. chem. phys., Vol.21, No.6, pp.1087-1092(1953).
2. J. H. Irving and John G. Kirkwood, “The Statistical Mechanical Theory of Hydrodynamics,” J. chem. phys., Vol.18, No.6, pp.817-829(1950).
3. Loup Verlet, “Computer Experiment on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules,” Phys.rev., Vol.159, No.1, pp.98-103(1967).
4. B. Quentrec, and C. Brot, “New Method for Neighbors in Molecular Dynamics Computations,” J. comput. phys., Vol.13, pp.430-432 (1973).
5. D. C. Rapaport, “Large-Scale Molecular Dynamics Simulation Using Vector and Parallel Computers,” Comput. phys. rep., Vol.9, pp.1-53(1988).
6. Madeleine Meyer and Vallilis Pontikis, “Computer Simulation in Material Science: Interatomic Potentials, Simulation Techniques and Applications,” Kluwer Academic Publishers, USA,(1991).
7. W. G. Hoover, C. G. Hoover and I. F. Stowers, ”Interface tribology by nonequilibrium molecular dynamics fabrication technology,” Mater Res. Soc. Symp.,140 (1989).
8. Stowers I., Belak J. F., F.,Lucca D. A., Komanduri R.,Rhorer R. L.,Moriwaki T.,Okuda K., Ikawa H., Shimada S., Tanaka H., Dow T. A. and Drescher J. D., ”Molecular Dynamics Simulation of the Chip Forming Process in Single Crystal Copper and Comparison with Experimental Data Proc”,6th Annu. Conf. AM. Soc. Prec. Eng. pp.100-103.
9. J. Belak and I. F. Stowers,”A Molecular Dynamics Model of the Orthogonal Cutting Process, ” Am. Soc. Prec. Eng. pp.76-79(1990).
10. J. Belak,”Modelling Atoms when Surfaces Collide,” Nanotribology (Energy and Technology Review),pp.13-24(1994).

11. M.E. Riley, M.E. Coltran D.J. Diestler. and J. Chem., ” A velocity reset method of simulating thermal motion and damping in gas–solidcollisions,” Phys.Vol.88, pp.5934-5942(1988).
12. N. Ikawa, S. Shimada, H. Tanaka and G. Ohmori, ”An Atomistic Analysis of Nanometric Chip Removal as Affected by Tool-Work Interaction in Diamond Turning,” Ann. CIRP , Vol.40 , No.1 , pp.551-554(1991).
13. Shimada et al, ”Structure of Micromachined Surface Simulated by Molecular Dynamics Analysis,” Ann. CIRP , Vol.43 , No.9 , pp.51-54(1994).
14. S. Shimada, N. Ikawa, G. Ohmori, H. Tanaka and J. Uchikoshi, “Molecular Dynamics Analysis as Compared with Experimental Results of micromachining,” Ann.CIRP,Vol.41,No.1, pp.117-120(1992).
15. S. Shimada et al, “Feasibility Study on Ultimate Accuracy in Microcutting Using Molecular Dynamics Simulation,” Ann. CIRP, Vol.42,No.1,pp.91-94(1993).
16. S. Shimada et al, “Molecular Dynamics Analysis of Cutting Force and Chip Formation Process in Microcutting,” J.JSPE,Vol.59,No.12, pp.51-51(1993).
17. T. Inamura, H. Suzuki and N. Takezawa, “Cutting experiments in a computer using atomic models of a copper crystal and a diamond tool,” Int. J.Japan.Soc.Prec., Eng., Vol.25,pp.259-266(1991).
18. T. Inamura,N. Takezawa and N. Taniguchi, ”Atomic-scale cutting in a computer using crystal models of copper and diamond,” Ann.CIRP , Vol.41 , pp.121-124(1992).
19. T. Inamura, N. Takezawa and Y. Kumaki,” Mechanics and energy dissipation in nanoscale cutting,” Ann.CIRP, Vol.42 , pp.79-82(1993).
20. T. Inamura, N. Takezawa,Y. Kumaki and T. Sata,” On a possible mechanism of shear deformation in nanoscale cutting,” Ann. CIRP, Vol.43,pp.47-50(1994).
21. X.S. Han, B. Lin, S.Y. Yu and S.X. Wang, “Investigation of tool geometry in nanometric cutting by molecular dynamics simulation,” Journal of Materials Processing Technology, Vol.129, pp.105-108(2002).

22. R. Komanduri, N. Chandrasekaran nad L. M. Raff, ”Effect of tool geometry in nanometric cutting: a molecular dynamics simulation approach,” Wear, Vol.219, pp.84-97(1998).
23. R. Komanduri, N. Chandrasekaran nad L. M. Raff, ”MD Simulation of nanometric cutting of single crystal aluminum-effect of crystal orientation and direction of cutting,” Wear,Vol.242,pp.60-88(2000).
24. R. Komanduri, N. Chandrasekaran nad L. M. Raff, ”MD Simulation of indentation and scratching of single crystal aluminum, “ Wear, Vol.240, No.1-2, pp.113-143(2000).
25. R. Komanduri, N. Chandrasekaran nad L. M. Raff, ”Molecular dynamics simulation of atomic-scale friction,” Phys. Rev.B,Vol.61, pp.14007-14019(2000).
26. R. Komanduri, M. Lee and L. M. Raff, ”The significance of normal rake in oblique machining,” International Journal of Machine Tools and Manufacture, Vol.44, No.10,pp.1115-1124(2004).
27. Y. Y. Ye, R. Biswas, J. R. Morris, A. Bastawros and A. Chandra, ”Molecular dynamics simulation of nanoscale machining of copper,” Nanotechnology, Vol.14, pp.390-396(2003).
28. Q.X. Pei, C. Lu, F. Z. Fang and H. Wu, ”Nanometric cutting of copper: A molecular dynamics study,” Computational Materials Science, Vol.37, No.4, pp.434-441(2006).
29. Q.X. Pei, C. Lu and H. P. Lee,” Large scale molecular dynamics study of nanometric machining of copper,” Computational MaterialsScience , Vol.41, pp.177–185(2007).
30. J.E. Lennard-Jonse, “On The Determination of Molecular Fields. I. From the Variation of the Viscosity of a Gas with Temperature,” Proc.Roy.Soc.(Lond.), Vol.106A, 441(1924).
31. L.A. Girifalco and V.G. Weizer, “Application of the Morse Potential Function to Cubic Metals,” Phys.Rev.,Vol.114, No.3, pp.687-690(1959).
32. Murray S. Daw, and M. I. Baskes, “Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals,” Phy.Rev. Lett., Vol.50, No.17, pp.1285-1288(1983).
33. Murray S. Daw and M. I. Baskes, “Embedded-Atom Method: Derivation and Application to Impurities, Surfaces, and OtherDefects in Metals,” Phy. Rev. B., Vol.29, No.12 , pp.6443-6453(1983).

34. C. W. Gear, “Numerical Initial Value Problems in Ordinary Differential Equations,” Prentice-Hall, Englewood Cliffs, NJ,(1971).
35. R. A. Johnson, “Analytic Nearest-Neighbor Model for FCC Metals,” Phy. Rev. B., Vol.37, No.8, pp.3924-3931(1988).
36. 鄭宇哲,”分子動力學模擬單晶銅材的奈米尺寸切削行為”,國立台灣科技大學碩士論文,2008。
37. J. M. Haile, “Molecular Dynamics Simulation,John Wiley and Sons,” New York, (1992).
38. J. D. Kim and C. H. Moon, “A study on microcutting for the configuration of tools using molecular dynamics,” Journal of Materials Processing Technology, Vol.59, pp.309-314(1996).
39. Cynthia L. Kelchner, S. J. Plimpton and J. C. Hamilton, “Dislocation Nucleation and Defect Structure During Surface Indentation,” Phy.Rev. B., Vol.58, No.17, pp.11085-11088(1998).
40. R. A. Johnson, “Alloy Models with the Embedded-Atom Method,” Phy. Rev. B., Vol.39, No.17, pp.12554-12559(1989).
41. K. Maekawa and A.Itoh, “Friction and tool wear in nano-scale machining – A molecular dynamics approach,” Wear, Vol.188, pp.115-122(1995).

QR CODE