簡易檢索 / 詳目顯示

研究生: Alviani Hesthi Permata Ningtyas
Alviani - Hesthi Permata Ningtyas
論文名稱: 測量過渡或紊流噴泉在密度界面層之 穿透性捲增流量的新實驗設計
A new experimental design to measure the penetrative entrainment flow rate due to a transition or turbulent fountain at a density interface
指導教授: 林怡均
Yi-Jiun Peter LIN
口試委員: 戴璽恆
Albert Dai
田維欣
Wei-Hsin Tien
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 139
中文關鍵詞: 密度界面紊流噴泉穿透性捲增。
外文關鍵詞: Density interface, turbulent fountain, penetrative entrainment.
相關次數: 點閱:334下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 藉由本噴泉產生的穿透性捲增在自然界中有許多實際上的應用, 其中 包括商用大樓的冷卻系統, 與改善水質的循環式儲水系統等。 本研究量化探 討穿透性捲增的體積流量, 利用新的實驗設計估算噴泉在密度界面層之穿 透性捲增的體積流量。 實驗使用鹽浴技術, 鹽水源與清水源分別置於壓克力 模型內不同的高度位置, 清水源位於模型頂部, 鹽水源利用壓克力管位於模 型底部上方2 cm 處。 本研究總共有九組實驗, 其中有三組實驗, 清水源的 流體撞擊到壓克力模型底部邊界。 本研究採用兩種資料擷取方法包括密度 量測與影像擷取。 實驗的初始情況為兩分層流體, 上層為清水, 下層為經過 染色處理的鹽水, 實驗開始之後, 上層流體的密度會隨著時間而增加, 直到 實驗達到穩態時, 上層流體的密度趨近於定值。 而在暫態時下層流體的密度 為定值, 除了清水源撞擊壓克力模型底部邊界的實驗, 這些實驗, 下層流體 的密度會低於鹽水源溶液的密度, 造成密度層界面不甚明顯。 對於清水源流 體沒有撞擊到模型底部邊界的實驗, 此實驗設置提供三個獨立方程式估算 噴泉產生的穿透性捲增的體積流量, 使用紊流噴泉模型估算, 當初始噴流動 量為4/3 Q2f/A 時, 密度界面層的理察遜數範圍在0.029到1.816之間, 捲增率範圍 在0.13到2.21之間, 當初始噴流動量為Q2f/A 時, 密度界面層的理察遜數範圍 在0.044到14.389之間, 捲增率範圍在0.12到2.08之間。


    Penetrative entrainment by a turbulent fountain has many practical applications
    in nature. The examples include the cooling system in the commercial building,
    recirculating a water reservoir and the process of improving the water quality.
    This research studied the penetrative entrainment flow rate quantitatively. A
    new experimental design was developed to estimate the penetrative entrainment
    volume flow rate by a turbulent fountain.
    Simulation experiments used the salt bath technique. Two sources, a salt solution source and a fresh water source, were placed in a plexiglass tank. Two
    sources were located at different heights, the fresh water source at the top and the salt solution source at 2 cm above the floor of the tank. There were 9 experimental runs conducted in this research, and the flow from the fresh water source hit the floor boundary in 3 runs of them. Two data acquisition methods included the measurements of solution density and the recording of flow images.
    Experiments started from the 2 layers initially with the fresh water as the
    upper layer and the salt solution as the lower layer. After the experiment began,
    the density in the upper dilute layer increased with the time until the steady state
    and the density in the lower dense layer remained the same in the transient state
    except for the cases in which the fountain flow hit the floor boundary. When the
    fresh water flow hit the floor boundary, the density of the lower dense layer was less than that of the salt solution and the interface was unclear. For the experimental cases in which the fountain flow does not reach the floor, this new experimental set-up gives three independent equations to estimate the penetrative entrainment flow rate by a fountain flow. Using the numerical turbulent fountain flow model gives the Richardson number at the density interface between 0.029 and 1.816 and the entrainment rate in the range between 0.13 and 2.21, when the initial fountain momentum is 4/3 Q2f/A , and the Richardson number at the density interface between 0.044 and 14.389 and the entrainment rate in the range between 0.12 and 2.08, when the initial fountain momentum is Q2 /A .

    Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii 1 Introduction 1 1.1 Background and Purpose for this Study . . . . . . . . . . . . . . . . 1 1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Flow Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 The Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 7 2 Theoretical Analysis 9 2.1 Theoretical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Penetrative Entrainment Flow Rate Estimations . . . . . . . . . . . 12 3 Experiments 15 3.1 Arrangement of The Water Flow . . . . . . . . . . . . . . . . . . . 15 3.1.1 Rotameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.1.2 Experimental Tank . . . . . . . . . . . . . . . . . . . . . . . 16 3.1.3 Constant Head Tanks . . . . . . . . . . . . . . . . . . . . . . 16 3.1.4 Siphon Tank . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2 Digital Image Recording . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3 Experimental Runs . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.4 Data Collection and Processing Approach . . . . . . . . . . . . . . 19 3.4.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.4.2 Data Processing Approach . . . . . . . . . . . . . . . . . . . 20 3.5 Lambert Beer Law . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4 Experimental Results 23 4.1 Two Series of Experiments . . . . . . . . . . . . . . . . . . . . . . . 23 4.2 The Process To The Steady State . . . . . . . . . . . . . . . . . . . 24 4.3 The Density Measurements . . . . . . . . . . . . . . . . . . . . . . . 25 4.3.1 Experimental Measurements . . . . . . . . . . . . . . . . . . 25 4.3.2 Comparisons with Theoretical Predictions . . . . . . . . . . 29 4.4 The Light Intensity Data . . . . . . . . . . . . . . . . . . . . . . . . 31 4.4.1 Experimental Data . . . . . . . . . . . . . . . . . . . . . . . 31 4.4.2 Weighted Intensity Slope . . . . . . . . . . . . . . . . . . . . 31 4.5 Interface Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.6 Penetrative Entrainment Flow Rate . . . . . . . . . . . . . . . . . . 34 4.6.1 Experimental Results . . . . . . . . . . . . . . . . . . . . . . 34 4.6.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.7 Richardson Number and Entrainment Rate . . . . . . . . . . . . . . 38 5 Conclusions and Suggestions 41 5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5.2 Suggestions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 References 45 Table 47 Figure 65 Curriculum Vitae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

    [1] The importance of salt domes to the Louisiana economy. Solution Through Science, (2013).
    [2] ”The temperature distribution in the ocean”. 21 July 2016 hhttp:nptel.ac.in/cources/119102007i.
    [3] Kumagai, M. (1984). Turbulent buoyant convection from a source in a confined two-layered region. Journal of Fluid Mechanics, 147, 105 - 131.
    [4] Lin, Y. J. P. and Linden, P. F. (2005). The entrainment due to a turbulent fountain at a density interface. Journal of Fluid Mechanics, 542, 25 - 52.
    [5] Baines, W.D. (1975). Entrainment by a plume or jet at a density interface. Journal of Fluid Mechanics, 68, 309-320.
    [6] Coffey, C. J. and Hunt, G. R. (2010). The unidirectional emptying box. Journal of Fluid Mechanics, 660, 456 - 474.
    [7] Lee, J.H.W and Chu, V.H. (2003). Turbulent jets and plumes - A Lagrangian approach., New York : Kluwer academic Publishers.
    [8] Hunt, G.R. and Burridge, H.C. (2015). Fountains in industry and nature., Annu. Rev. Fluid Mechanics, 47, 195 - 220.
    [9] Turner, J.S. (1986). Turbulent entrainment: the development of the entrainment assumption, and its application to geophysical flows. Journal of Fluid Mechanics, 173, 431-471.
    [10] Bloomfield, L.J. and Kerr, C.R. (2000). The theoretical model of a turbulent fountain. Journal of Fluid Mechanics, 424, 197 - 216.
    [11] Linden, P. F., Lane-Serff,G. F. and Smeed, D. A. (1990). Emptying filling boxes: the fluid mechanics of natural ventilation. Journal of Fluid Mechanics, 212, 309 - 335.
    [12] Linden, P.F. (1999).The fluid mechanics of natural ventilation. Annu. Rev. Fluid Mech, 31, 201 - 38.
    [13] Baines, W. D., Turner, J. S. and Campbell, I. H. (1990). Turbulent fountain in open chamber. Journal of Fluid Mechanics, 212, 557-592.
    [14] Baines, W.D. and Turner, J.S. (1969). Turbulent buoyant convection from a source in a confined region. Journal of Fluid Mechanics, 37, 51 - 80.
    [15] Morton, B. R. (1956). Forced plumes. Journal of Fluid Mechanics, 5, 151 163.
    [16] Hunt, G. R. and Kaye, N. B. (2001). Virtual origin correction for lazy turbulent plumes. Journal of Fluid Mechanics, 435, 377 - 396.
    [17] Kaye, N. B. and Hunt, G. R. (2009). An experimental study of large area source turbulent plumes. International Journal of Heat and Fluid Flow, 30, 1099 - 1105.
    [18] Hunt, G. R. and Coffey, C. J. (2010). Emptying boxes classifying transient natural ventilation flows. Journal of Fluid Mechanics, 646, 137 - 168.
    [19] Lin, Y.J.P. and Lin, C.L. (2014). A study on flow stratification in a space using displacement ventilation. International Journal of Heat and Mass Transfer, 73, 67 - 75.
    [20] Lin, Y. J. P. and Yu, Y. W. (2016). The emptying-box problem with a baffle of different porosity percentages. International Journal of Heat and Mass Transfer, 94, 335 - 342.

    QR CODE