簡易檢索 / 詳目顯示

研究生: 呂玲慧
Ling-Hui Lu
論文名稱: 複雜背景下基於橢圓弧優先權的快速強健橢圓偵測演算法
Fast and Robust Elliptical-Arc-Priority Based Algorithm for Ellipse Detection under Complex
指導教授: 鍾國亮
Kuo-Liang Chung
口試委員: 貝蘇章
Soo-Chang Pei
顏嗣鈞
Hsu-chun Yen
廖弘源
Hong-Yuan Mark Liao
古鴻炎
Hung-yan Gu
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 43
中文關鍵詞: 參數修正橢圓偵測橢圓弧複雜背景準確度強健性
外文關鍵詞: Ellipse detection, Elliptical arcs, Complex background, Accuracy, Parameter refinement, Robustness
相關次數: 點閱:270下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在複雜背景影像中偵測橢圓是圖形辨識與機器視覺領域中相當具有挑戰性的研究議題。本論文提出一個有效且強健的橢圓偵測法來快速的偵測複雜背景影像中的橢圓物件。我們的演算法主要由以下四個階段構成:(1) 利用基於優先權的橢圓弧選取策略來決定可能的橢圓,(2) 利用橢圓對稱性質從可能的橢圓中篩選出候選橢圓,(3) 以繪圖式投票機制決定候選橢圓是否為真正的橢圓,(4) 以最小平方法修正橢圓參數。根據一些真實的測試影像,實驗結果顯示我們提出的方法與Prasad等人的方法相比,能夠準確且更快速的偵測出複雜背景影像中的橢圓物件。


Detecting ellipses from complex background is a challenging problem in pattern recognition and machine vision community. In this paper, a novel efficient and robust elliptical-arc-priority based algorithm is presented for detecting ellipses from the input image with complex background. In the proposed algorithm, we first sort all elliptical arcs according to their importance levels in ellipse detection and then assign a proper priority to each elliptical arc. After selecting the elliptical arc with the highest priority in the current elliptical arc pool as a seed of the possible ellipse, a symmetry-based screening strategy is proposed to confirm whether the possible ellipse can be promoted to the candidate ellipse or not. Further, a drawing-based voting process is presented for determining the true ellipse. Finally, a refinement method is presented to improve the accuracy of detected ellipses. Based on some real test images, experimental results demonstrated the computation-saving and robust advantages of our proposed ellipse detection algorithm when compared to the current algorithm by Prasad et al.

中文摘要 i Abstract ii 目錄 iii 圖目錄 iv 表目錄 v 第一章 緒論 1 1.1 相關研究 1 1.2 論文架構 3 第二章 複雜背景下基於橢圓弧優先權的橢圓偵測法 4 2.1 利用基於橢圓弧優先權的選取策略找出可能的橢圓 5 2.1.1 橢圓弧的擷取 5 2.1.2 決定橢圓弧優先權 8 2.1.3 橢圓弧分群 11 2.1.4 隨機抽樣決定可能性橢圓 13 2.1.4.1 決定橢心 13 2.1.4.2 決定橢圓剩餘三個參數 14 2.2 基於對稱性質的候選橢圓篩選策略 14 2.3 以繪圖法為基礎的真正橢圓決定法 17 2.4 最小平方法的橢圓參數修正方法 18 第三章 實驗結果 21 3.1 準確度測量方法 21 3.2 合成影像 22 3.3 真實影像 28 第四章 結論 30 參考文獻 31

[1] D. H. Ballard and C. M. Brown, Computer Vision, Prentice–Hall, Englewood Cliffs, New Jersey, 1982.
[2] E. R. Davies, Machine Vision: Theory, Algorithms, Practicalities, Academic Press, London, 1990.
[3] J. Illingworth and J. Kittler, “Survey: A Survey of the Hough Transform,” Computer Vision, Graphics, and Image Processing, 44(1), pp. 87–116, 1988.
[4] V. F. Leavers, “Survey: Which Hough Transform,” CVGIP: Image Understanding, 58(2), pp. 250–264, 1993.
[5] I. Pitas, Digital Image Processing Algorithms, Prentice-Hall, Englewood Cliffs, New York, 1993.
[6] N. Bennett, R. Burridge, and N. Saito, “A method to detect and characterize ellipses using the Hough Transform,” IEEE Trans. Pattern Analysis and Machine Intelligence, 21(7), pp. 652–657, 1999.
[7] E. R. Davies, “Finding ellipses using the generalized Hough transform,” Pattern Recognition Letters, 9(2), pp. 87–96, 1989.
[8] C. T. Ho and L. H. Chen, “A fast ellipse/circle detector using geometric symmetry,” Pattern Recognition, 28(1), pp. 117–124, 1995.
[9] C. T. Ho and L. H. Chen, “A high–speed algorithm for elliptical object detection,” IEEE Trans. Image Processing, 5(3), pp. 547–550, 1996.
[10] S. Tsuji and F. Matsumoto, “Detection of ellipses by a modified Hough transformation,” IEEE Trans. Computers, 27(8), pp. 777–781, 1978.
[11] R. K. K. Yip, P. K. S. Tam, and D. N. K. Leung, “Modification of Hough transform for circles and ellipses detection using a 2-dimensional array,” Pattern Recognition, 25(9), pp. 1007–1022, 1992.
[12] H. K. Yuen, J. Illingworth, and J. Kittler, “Detection partially occluded ellipses using the Hough transform,” Image and Vision Computing, 7(1), pp. 31–37, 1989.
[13] L. Xu, E. Oja, and P. Kultanan, “A new curve detection method: randomized Hough transform (RHT),” Pattern Recognition Letters, 11(5), pp.331–338, 1990.
[14] L. Xu and E. Oja, “Randomized Hough Transform (RHT): Basic mechanisms, algorithms, and computational complexities,” CVGIP: Image Understanding, 57(2), pp. 131–154, 1993.
[15] R. A. McLaughlin, “Randomized Hough Transform: Improved ellipse detection with comparison,” Pattern Recognition Letters, 19, pp. 299–305, 1998.
[16] K. L. Chung and Y. H. Huang, “Speed up the computation of randomized algorithms for detecting lines, circles, and ellipses using novel tuning and LUT-based voting platform,” Applied Mathematics and Computation, 190(1), pp. 132-149, 2007.
[17] E. Kim, M. Haseyama, and H. Kitajima, “Fast and robust ellipse extraction from complicated images,” in Proc. Int. Conf. Information Technology and Applications, 2002, pp. 357-362.
[18] F. Mai, Y. S. Hung, H. Zhong, and W. F. Sze, “A hierarchical approach for fast and robust ellipse extraction,” Pattern Recognition, 41(8), pp. 2512-2524, 2008.
[19] Z. Y. Liu and H. Qiao, “Multiple ellipses detection in noisy environments: a hierarchical approach,” Pattern Recognition, 42(11), pp. 2421-2433, 2009.
[20] X. Bai, C. Sun, and F. Zhou, “Splitting touching cells based on concave points and ellipse fitting,” Pattern Recognition, 42(11), pp. 2434-2446, 2009.
[21] D. K. Prasad, M. K. H. Leung, and S. Y. Cho, “Edge curvature and convexity based ellipse detection method,” Pattern Recognition, 45(9) pp. 3204-3221, 2012.
[22] C. Akinlar and C. Topal, “EDCircles: Areal-time circle detector with a false detection control,” Pattern Recognition, 46(3), pp. 725-740, 2013.
[23] C. Akinlar and C. Topal, “EDPF: a parameter-free edge segment detector with a false detection control,” Int. J. Pattern Recognition and Articial Intelligence, 23(6), pp. 862-872, 2012.
[24] A.Y.-S. Chia, S. Rahardja, D. Rajan, and M.K. Leung, “A split and merge based ellipse detector with self-correcting capability,” IEEE Trans. Image Processing, 20(7), pp. 1991-2006, 2011.
[25] C. Grigorescu, N. Petkov, and M. A. Westenberg, “Contour and boundary detection improved by surround suppression of texture edges,” Image and Vision Computing, 22(8), pp. 609-622, 2004.
[26] C. Guo, T. Pridmore, Y. Kong, and X. Zhang, “An improved Hough transform voting scheme utilizing surround suppression,” Pattern Recognition Letters, 30(13), pp. 1241-1252, 2009.
[27] Y. H. Huang, K. L. Chung, W. N. Yang, and S. H. Chiu, “Efficient symmetry-based screening strategy to speed up randomized circle-detection,” Pattern Recognition Letters, 33(16), pp. 2071-2076, 2012.
[28] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography,” Commun. ACM 24 (6), 381-395, 1981.
[29] A. W. Fitzgibbon, M. Pilu, and R. B. Fisher, “Direct least-squares fitting of ellipses,” IEEE Trans. Pattern Analysis and Machine Intelligence, 21 (5), pp. 476-480, 1994.
[30] K. L. Chung and Y. H. Huang, “A pruning-and-voting strategy to speed up the detection for lines, circles, and ellipses,” J. Information Science and Engineering, 24(2), pp. 503-520, 2008.
[31] M. R. Kappel, “An ellipse-drawing algorithms for faster displays,” Fundamental Algorithms for Computer Graphics, pp. 257–280, 1985.

QR CODE