簡易檢索 / 詳目顯示

研究生: 洪聖翔
SHENG-HSIANG HUNG
論文名稱: 牛血清蛋白之表面活性和界面擴張模量-磷酸鹽緩衝溶液濃度效應
The effect of phosphate buffer concentration on the surface activity and dilatational rheology of bovine serum albumin
指導教授: 林析右
Shi-Yow Lin
口試委員: 陳立仁
Li-Jen Chen
蔡瑞瑩
Ruey-Yug Tsay
曾文祺
Wen-Chi Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 53
中文關鍵詞: 牛血清白蛋白質表面張力擴張模量磷酸鹽緩衝溶液
外文關鍵詞: Bovine serum albumin, surface tension, dilatational modulus, phosphate buffer
相關次數: 點閱:216下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

球狀蛋白,是一種廣泛應用於科學上且扮演著關鍵作用的蛋白質。緩衝溶液常為球狀蛋白質之溶劑,但卻未曾有人探討緩衝溶液對球狀蛋白質吸附行為之影響。本論文擬探討牛血清白蛋白(Bovine Serum Albumin, BSA)於磷酸鹽緩衝溶液中之吸附行為。
本研究使用影像數位化懸掛氣泡測量儀,量測牛血清蛋白於磷酸鹽緩衝溶液(0 - 44 mM)中吸附至乾淨氣-液界面之動態表面張力。於BSA吸附後期,表面張力保持近乎恆定達數小時,此為其平衡表面張力。BSA在0.2–15 (10-10 mol/cm3)濃度範圍內於0、10、44mM磷酸鹽緩衝溶液中,其平衡張力維持在52.20.6、54.10.2與53.90.1 mN/m。
本研究亦量測BSA於磷酸鹽緩衝溶液(0-44mM)中之動態張力。當BSA濃度為6.0  10-10 mol/cm3,改變緩衝溶液濃度(0-300M),緩衝溶液濃度越高時,張力下降趨勢趨緩;但當緩衝溶液濃度大於300M後,張力下降趨勢則改為變快。在BSA濃度為2和15 (10-10 mol/cm3)時,動態張力下降趨勢亦呈相同行為。
BSA於磷酸鹽緩衝溶液中之吸附過程,系統檢測到諸多微小的界面擾動。藉由分析這些擾動所引起的張力和表面積之變化,可用來計算表面擴張速率[d(lnA)/dt]和表面張力變化速率(d/dt),隨後得到膨脹模量[(E = (d/dt)/(dlnA/dt)]。隨著緩衝溶液濃度升高(300M至1mM),膨脹模量變化趨勢些微升高;隨著BSA濃度升高(2至610-10 mol/cm3),膨脹模量變化趨勢亦呈相同行為,但當BSA濃度升高至1510-10 mol/cm3,膨脹模量變化趨勢升高更加明顯。


Globular proteins, characterized by a nearly spherical three-dimensional conformation, are extensively utilized in numerous industrial and scientific applications; wherein, they are predominantly utilized in conjunction with aqueous buffer as solvents. However, to date, the influence of buffer on the surface-active nature and interfacial rheological behavior of globular proteins is yet to be ascertained. This study aims to investigate the effect of phosphate buffer on the surface activity and dilational rheology of globular protein Bovine Serum Albumin (BSA).
The relaxations of surface tension (ST) and surface area (SA), resulting from the adsorption of BSA molecules onto the clean air-water interface, were measured by a pendant bubble tensiometer. The relaxation data revealed that during the latter stages of the BSA’s adsorption process, the ST kept fairly constant for several hours. Consequently, these fairly constant ST values were set as the equilibrium ST. For BSA(aq) in 0, 10 and 44 mM phosphate buffer, the equilibrium ST remained essentially unchanged at 52.20.6, 54.10.2 and 53.90.1 mN/m, respectively, over a wide concentration range [CBSA = 0.2 – 15.0 (10-10 mol/cm3)].
The effect of buffer concentration [Cbuffer = 0 – 44 mM] on the dynamic ST of BSA was examined as well. The data revealed that at a fixed protein concentration (e.g., CBSA = 6.010-10 mol/cm3), an increase in buffer concentration (from 0 – 300 M) resulted in an increasingly slower ST relaxation. However, with a further increase in buffer concentration (Cbuffer > 300 M), the ST relaxed progressively faster. A similar behavior was also observed at a more elevated and dilute BSA concentration [i.e., CBSA = 2.0 and 15.0 (10-10 mol/cm3)].
Numerous minute interfacial perturbances (induced by small ambient temperature variations) were also detected amidst the SA and ST relaxations. The surface dilational rate (dlnA/dt) and rate of ST change (d/dt) of these distinct perturbances were estimated and then after, the dilational modulus of the adsorbed BSA film [E = (d/dt)/(dlnA/dt)] was evaluated. The results revealed that an increase in buffer concentration (from 300 M – 1mM) corresponded to a slight increase in the dilational modulus of the adsorbed BSA film; likely indicating a change in the rigidity of the adsorbed film at an elevated buffer concentration.

摘要 I Abstract II 目錄 III 圖目錄 IV 表目錄 VII 第一章 簡介 1 1.1界面活性劑的特性 2 1.2界面活性劑分類 2 1.3蛋白質 4 第二章 文獻回顧 8 2.1界劑分子在氣-液界面之吸附行為 8 2.2界劑水溶液之表面張力量測 9 2.3表面流變學 9 2.4表面擴張模量 9 第三章 張力量測方法 12 3.1 懸掛氣泡影像數位化測量儀 12 3.1.1懸掛氣泡法量測界面張力之理論 11 3.1.2懸掛氣泡影像數位化測量儀 14 3.2其它實驗儀器 15 3.3實驗藥品 16 3.4實驗方法 17 3.4.1溶液配製 17 3.4.2懸掛氣泡影像數位化測量儀之實驗流程 19 第四章 實驗結果 21 4.1磷酸鹽緩衝溶液之動態張力 21 4.2 BSA水溶液之動態張力 23 4.3 BSA於不同濃度磷酸鹽緩衝溶液下之平衡表面張力 23 4.4磷酸鹽緩衝溶液濃度對平衡表面張力影響 30 4.5 BSA於不同濃度磷酸鹽緩衝溶液下之動態表面張力 33 4.6牛血清白蛋白質溶於磷酸鹽緩衝溶液中之界面擴張模量 36 第五章 結論與建議 42 參考文獻 43

1.張有義、郭蘭生編譯,〝膠體及界面化學入門〞,高立圖書有限公司,第四章(1999).
2.D Myers, “Surfaces, Interfaces, and Colloids: Principles and Applications”; Wiley-Vichy: New York, (1999).
3.刈米孝夫 〝界面活性劑的原理與應用〞,王鳳英編譯:高立圖書有限公司,第一章、第七章(1990)。
4.李雅琪,〝聚氧乙烯系非離子型界劑之吸附暨聚集行為研究〞,國立臺灣大學化學工程所博士論文(2002)。
5.BJ Palla, DO Shah, “Correlation of dispersion stability with surfactant concentration and abrasive particle size for chemical mechanical polishing (cmp) slurries,” J. Dispersion Sci. Technol, 2000, 21, 491.
6.TM Pan, TF Lei, CC Chen, “Reliability Models of Data Retention and Read-Disturb in 2-Bit Nitride Storage Flash Memory Cells,” IEEE Electron Device Letters, 2000, 21, 338.
7.D Whitford, Proteins: Structure and Function. 2005, West Sussex: John Wiley & Sons.
8.JT Carl Ivar Brande, Introduction to Protein Structure. 2nd ed., New York : Garland Science, 1998
9.G Walsh, Proteins Biochemistry and Biotechnology. 2nd ed. , West Sussex: Wiley Blackwell., 2014
10.GDJ Phillies, “Reactive contribution to the apparent translational diffusion coefficient of a micelle,” J. Phys. Chem. 1981, 85, 3540.
11.PC Hiemenz, Principles of Colloid Surface Chemistry; Marcel Dekker, New York; Chapter 7, 1986.
12.VB Fainerman, “Theory and experiment on the measurement of kinetic rate constants for surfactant exchange at an air/water interface,” Colloid J. USSR, 1977, 39, 91.
13.R Miller, K Lunkenheimer, “Adsorption kinetics measurements of some nonionic surfactants,” Colloid Polymer Sci., 1986, 264, 357.
14.P Joos, G Serrien, “Dynamic surface and interfacial tensions of surfactant and polymer solutions,” J. Colloid Interface. Sci., 1989, 127, 97.
15.SY Lin, K Mckeigne, C Maldarelli, “A study on surfactant adsorption kinetics: effect of bulk concentration on the limiting adsorption rate constant,” Langmuir, 1991, 7, 1055.
16.VB Fainerman, SV Lylyk, “Adsorption kinetics of nonanol at the air-water interface: considering molecular interaction or aggregation within surface layer,” Kolloidn. Zh., 1982, 44, 538.
17.AZ Frumkin, “On the adsorption properties of surface-chemically pure aqueous solutions of n-alkyl-dimethyl and n-alkyl-diethyl phosphine oxides,” Phys. Chem. (Leipzig), 1925, 116, 466.
18.SY Lin, TL Lu, WB Hwang, “Adsorption and Desorption Kinetics of C12E4 on Perturbed Interfaces,” Langmuir, 1995, 11, 555.
19.SY Lin, WJ Wang, CT Hsu, “Adsorption Kinetics of Nonanol at the Air-Water Interface: Considering Molecular Interaction or Aggregation within Surface Layer,” Langmuir, 1997, 13, 6211.
20.YC Lee, YB Liou, R Miller, HS Liu, SY Lin, “Surface equation of state of nonionic cmen surfactants,” Langmuir, 2002, 18, 2686.
21.DO Johnson, KJ Stebe, “a study of surfactant adsorption kinetics: effect of intermolecular interaction between adsorbed molecules,” J. Colloid Interface Sci., 1996, 182, 526.
22.JF Baret, “Fast adsorption at the liquid-gas interface,” J. Phys. Chem., 1968, 72, 2755.
23.RP Borwankar, DT Wasan, “Kinetics of surfactant adsorption at fluid/fluid interfaces: non-ionic surfactants,” Chem. Eng. Sci., 1988, 43, 1323.
24.DC England, JC Berg, “Surface fractionation of multicomponent oil mixtures,” AIChE J., 1971, 17, 313.
25.R Miller, L Liggieri, Interfacial Rheology. 2nd ed. London: CRC Press, 2009.
26.AO Gbadamosi, R Junin, MA Manan, A Agi, JO Oseh, J Usman, Effect of aluminium oxide nanoparticles on oilfield polyacrylamide: Rheology, interfacial tension, wettability and oil displacement studies. J. Mol. Liq., 2019, 296, 111863.
27.A Maghsoudian, Y Tamsilian, S Kord, BS Soulgani, A Esfandiarian, M Shajirat, Styrene intermolecular associating incorporated-polyacrylamide flooding of crude oil in carbonate coated micromodel system at high temperature, high salinity condition: Rheology, wettability alteration, recovery mechanisms. J. Mol. Liq., 2021, 337, 116206.
28.D Weaire, The rheology of foam. Curr. Opin. Colloid Interface Sci., 2008, 13, 171-176.
29.SY Lin, K Mckeigne, C Malderelli, “Diffusion-controlled surfactant adsorption studied by pendant drop digitization,” AIChE J., 1990, 36, 1785.
30.CA Maclleod, CJ Radke, “Dynamics of surfactant sorption at the air/water interface: continuous-flow tensiometry,” J. Colloid Interface Sci., 1994, 166, 73.
31.PS de Laplace, Mechanique Celeste, Supplement to book, 1806, 10.
32.SS Datwani, KJ Stebe, “Surface Tension of an Anionic Surfactant: Equilibrium, Dynamics, and Analysis for Aerosol-OT,” Langmuir, 2001, 17, 4287.
33.SY Lin, TL Lu, WB Hwang, “Adsorption Kinetics of Decanol at the Air-Water Interface,” Langmuir, 1995, 11, 555.
34.K Kaur, R Kumar, SK Mehta, Nanoemulsion: A new medium to study the interactions and stability of curcumin with bovine serum albumin. J. Mol. Liq., 2015, 209, 62-70.
35.V Sharma, A Kumar, P Ganguly, AM Biradar, Highly sensitive bovine serum albumin biosensor based on liquid crystal. Appl. Phys. Lett., 2014, 104, 043705.
36.YK Manea, A Khan, MTA Qashqoosh, AA Wani, M Shahadat, Ciprofloxacin-supported chitosan/polyphosphate nanocomposite to bind bovine serum albumin: Its application in drug delivery. J. Mol. Liq., 2019, 292, 111337.
37.ZN Sheikhi, M Khajeh, AR Oveisi, M Bohlooli, Functionalization of an iron-porphyrinic metal–organic framework with Bovine serum albumin for effective removal of organophosphate insecticides. J. Mol. Liq., 2021, 343, 116974.
38.H Yuan, X Zheng, W Liu, H Zhang, J Shao, J Yao, C Mao, J Hui, D Fan, A novel bovine serum albumin and sodium alginate hydrogel scaffold doped with hydroxyapatite nanowires for cartilage defects repair. Colloid Surface B: Biointerface, 2020, 192, 111041.
39.M Paulsson, P Dejmek, Surface film pressure of β-lactoglobulin, α-lactalbumin and bovine serum albumin at the air/water interface studied by wilhelmy plate and drop volume. J. Colloid Interface Sci., 1992, 150, 394-403.
40.P Suttiprasit, J McGuire, The surface activity of α-lactalbumin, β-lactoglobulin, and bovine serum albumin: II. Some molecular influences on adsorption to hydrophilic and hydrophobic silicon surfaces. J. Colloid Interface Sci., 1992, 154, 327-336.
41.D Cho, G Narsimhan, EI Franses, Adsorption Dynamics of Native and Pentylated Bovine Serum Albumin at Air-Water Interfaces: Surface Concentration/ Surface Pressure Measurements. J. Colloid Interface Sci., 1997, 191, 12-25.
42.C Ybert, JM di Meglio, Study of Protein Adsorption by Dynamic Surface Tension Measurements:  Diffusive Regime. Langmuir, 1998, 14, 471-475.
43.X Wen, EI Franses, Adsorption of bovine serum albumin at the air/water interface and its effect on the formation of DPPC surface film. Colloid Surface A: Physicochem. Eng. Asp., 2001. 190, 319-332.
44.SJ McClellan, EI Franses, Effect of concentration and denaturation on adsorption and surface tension of bovine serum albumin. Colloid Surface B: Biointerface, 2003, 28, 63-75.
45.P Sausse, V Aguie-Beghin, R Douillard, Effects of epigallocatechin gallate on -casein adsorption at the air/water interface. Langmuir, 2003, 19, 737-743.
46.D Güzey, I Gulseren, B Bruce, J Weiss, Interfacial properties and structural conformation of thermosonicated bovine serum albumin. Food Hydrocolloid, 2006, 20, 669-677.
47.LG Cascão Pereira, O Theodoly, HW Blanch, CJ Radke, Dilatational Rheology of BSA Conformers at the Air/Water Interface. Langmuir, 2003. 19, 2349-2356.
48.A Berthold, H Schubert, N Brandes, L Kroh, Behaviour of BSA and of BSA-derivatives at the air/water interface. Colloid Surface A: Physicoche. Eng. Asp., 2007, 301, 16-22.
49.AA Mikhailovskaya, SY Lin, G Loglio, R Miller, BA Noskov. Effect of a cationic surfactant on protein unfolding at the air–solution interface. Mendeleev Commun., 2011, 21, 341-343.
50.MD Reichert, NJ Alvarez, CF Brooks, AM Grillet, LA Mondy, SL Anna, LM Walker, The importance of experimental design on measurement of dynamic interfacial tension and interfacial rheology in diffusion-limited surfactant systems. Colloid Surface A: Physicochem. Eng. Aspect, 2015, 467, 135-142.
51.J Boos, N Preisig, C Stubenrauch, Dilational surface rheology studies of n-dodecyl-β-d-maltoside, hexaoxyethylene dodecyl ether, and their 1:1 mixture. Adv. Colloid Interface Sci., 2013, 197-198, 108-117.
52.VB Fainerman, VI Kovalchuk, EV Aksenenko, R Miller, Dilational Viscoelasticity of Adsorption Layers Measured by Drop and Bubble Profile Analysis: Reason for Different Results. Langmuir, 2016, 32, 5500-5509.
53.黎燕婕,〝牛血清蛋白質水溶液之界面擴張模量和吸附動力學研究〞,國立台灣科技大學化學工程系博士論文(2022)。
54.HA Barnes. Rheology of emulsions - a review. Colloid Surface A: Physicochem. Eng. Asp., 1994, 91, 89-95.
55.E Guerin, P Tchoreloff, N Leclerc, D Tanguy, M Deleuil, G Couarraze, Rheological characterization of pharmaceutical powders using tap testing, shear cell and mercury porosimeter. Int. J. Pharmaceut., 1999, 189, 91-103.
56.HC Kim, YY Won. Clinical, technological, and economic issues associated with developing new lung surfactant therapeutics, Biotech. Adv., 2018, 36, 1185-1193.
57.X Zhang, Z Wang, K Wang, JA Reyes-Labarta, J Gao, D Xu, Y Wang, Liquid-liquid phase equilibrium and interaction exploration for separation of azeotrope (2,2,3,3-tetrafluoro-1-propanol + water) with two imidazolium-based ionic liquids. J. Mol. Liq., 2020, 300, 112266.
58.AR Nesarikar, Rheology of Polymer Blend Liquid-Liquid Phase Separation, Macromolecules, 1995, 28, 7202-7207.
59.PA Kralchevsky, K Nagayama. Chapter 3 - Surface Bending Moment and Curvature Elastic Moduli, in Studies in Interface Science, PA Kralchevsky, K Nagayama, Editors, New York: Elsevier, 2001, 105-136.
60.TD Gurkov, PA Kralchevsky. Surface tension and surface energy of curved interfaces and membranes. Colloid Surface, 1990, 47, 45-68.
61.F Ravera, G Loglio, VI Kovalchuk, Interfacial dilational rheology by oscillating bubble /drop methods. Curr. Opin. Colloid Interface Sci., 2010, 15, 217-228.
62.JW Gibbs, Collected Works, New York: Longmans, 1928, 1
63.VI Kovalchuk, EV Aksenenko, DV Trukhin, AV Makievski, VB Fainerman, R Miller, Effect of Amplitude on the Surface Dilational Visco-Elasticity of Protein Solutions. Colloid Interface, 2018. 2, 57, 123
64.J Benjamins, A Cagna, EH Lucassen-Reynders, Viscoelastic properties of triacylglycerol /water interfaces covered by proteins. Colloid Surface A: Physicochem. Eng. Asp, 1996, 114, 245-254.
65.NA Alexandrov, KG Marinova, TD Gurkov, KD Danov, PA Kralchevsky, SD Stoyanov, TBJ Blijdenstein, LN Arnaudov, EG Palan, A Lips, Interfacial layers from the protein HFBII hydrophobin: Dynamic surface tension, dilatational elasticity and relaxation times. J. Colloid Interface Sci., 2012, 376, 296-306.
66.JT Petkov, TD Gurkov, BE Campbell, RP Borwankar, Dilatational and Shear Elasticity of Gel-like Protein Layers on Air/Water Interface. Langmuir, 2000, 16, 3703-3711.
67.J Lucassen, M van Den Tempel. Longitudinal waves on visco-elastic surfaces. J. Colloid Interface Sci., 1972, 41, 491-498.
68.C Lemaire, D Langevin, Longitudinal surface waves at liquid interfaces: Measurement of monolayer viscoelasticity. Colloid Surface, 1992, 65, 101-112.

無法下載圖示 全文公開日期 2024/08/26 (校內網路)
全文公開日期 2024/08/26 (校外網路)
全文公開日期 2024/08/26 (國家圖書館:臺灣博碩士論文系統)
QR CODE