簡易檢索 / 詳目顯示

研究生: 董昭毅
Jhao-Yi Dong
論文名稱: 超低功耗電壓源與高精度帶隙參考電壓源
Ultra Low Power Voltage Reference and High Precision Bandgap Reference
指導教授: 陳伯奇
Po-Ki Chen 
口試委員: 鍾勇輝
Yung-Hui Chung
盧志文
Chih-Wen Lu
陳信樹
Hsin-Shu Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 109
中文關鍵詞: 低功耗參考電壓源低功耗帶隙參考電壓源高精度帶隙參考電壓源
外文關鍵詞: Ultra low power voltage reference, Low power bandgap reference, High precision bandgap voltage reference
相關次數: 點閱:243下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出各式參考電壓源應用於光獵能系統,以超低功耗 CMOS 偏壓電
    路與高精度帶隙參考電壓電路來為整個光獵能系統中的各個電路提供偏壓,如:
    運算放大器、溫度感測器、類比至數位轉換器等電路提供穩定的偏壓。因超低
    功耗 CMOS 參考電壓源往往需要運算放大器來提升其電源電壓抑制比,非但需
    要消耗更多的面積與功耗,運算放大器的偏壓也會是一大問題,因此無法針對
    不同電路環境下做最佳化。為解決需要額外加入運算放大器提升電源電壓抑制
    比的問題,本論文使用一新型超低功耗參考電壓電路架構,得以在無需加入運
    算放大器的情況下有效提升電源電壓抑制比,並利用基底偏壓回授來對高溫電
    壓進行補償,讓電壓參考電路有寬裕的溫度工作與電源電壓變動範圍。
    帶隙參考電壓電路因運算放大器差動輸入對的偏移電壓對總輸出電壓有嚴
    重的影響,傳統高精度帶隙參考電壓電路需要加入額外的補償機制來對降低其
    輸出電壓的偏移量,此方法需要引入額外的控制訊號源且具複雜的邏輯控制,
    導致成本與設計難度上升。本論文亦提出一無需補償機制之 BJT 與 CMOS 混合
    使用的帶隙參考電壓電路架構,無須額外使用偏移消除的複雜電路與控制訊號
    即可達成高精度輸出電壓,並將第一個作品的低功耗參考電壓源進行改版後供
    應穩定電壓給運算放大器,從而實現低功耗的目標。
    本論文下線晶片使用 TSMC 0.18μm CMOS 標準製程實現,低功耗電壓源整
    體晶片佈局面積含 I/O pads 為 0.437mm2,後模擬結果為輸出電壓為 259mV,
    TC=10.28ppm、電源電壓抑制比為-80dB,功率消耗為 6.17nW。高精度帶隙參
    考電壓源整體晶片佈局面積含 I/O pads 為 0.938mm2,後模擬結果為輸出電壓為
    1.271V,TC=6.94ppm 電源電壓抑制比為-81dB,功率消耗為 17.6uW,輸出電壓
    偏移量為 0.15 %。


    This thesis proposes various reference voltage sources for use in solar energy
    harvesting systems. Ultra-low power CMOS voltage reference and high-precision
    bandgap reference voltage circuits are used to provide bias for various blocks in the
    entire solar energy harvesting system, such as operational amplifiers, temperature
    sensors, and analog-to-digital converters, to provide stable bias voltage. Ultra-low
    power CMOS reference voltage sources often require operational amplifiers to enhance
    their power supply rejection ratio. It not only consumes more area and power, but also
    becomes a major design issue to make it impossible for different circuit optimizations.
    To solve the problem of the need of additional operational amplifiers to enhance
    power supply rejection ratio, this thesis proposes a new type of ultra-low power
    reference voltage circuit architecture that can effectively improve power supply
    rejection ratio without operational amplifiers. Furthermore, the substrate bias feedback
    is used to compensate for high-temperature voltage allowing the voltage reference
    circuit to have a wide temperature operating range and power supply voltage variation.
    Traditional high-precision bandgap reference voltage circuits require additional
    compensation mechanisms to reduce the output voltage offset caused by the input offset
    voltage of the operational amplifier. It requires additional control signal sources and
    has complex logic control which increases cost and design difficulty. This thesis also
    proposes a bandgap reference voltage circuit architecture that uses a combination of
    BJT and CMOS without the need of compensation mechanism. High-precision output
    voltage can be achieved without using complex circuitry and control signals to
    eliminate input offset. The low-power reference voltage source of the first product is
    revised to provide stable voltage to the operational amplifier for low power
    consumption.
    The final chips of this thesis are implemented in a TSMC 0.18μm CMOS standard
    process. The overall chip layout area of the low-power voltage source, including I/O
    pads, is 0.438mm2
    . The post-simulation simulation results show that the output voltage
    is 259mV, the temperature coefficient is 10.28ppm, the power supply rejection ratio is
    -80dB, and the power consumption is 6.17nW. The overall chip layout area of the highprecision bandgap reference voltage source, including I/O pads, is 0.938mm2
    . The postsimulation results show the output voltage is 1.271V, the temperature coefficient is
    6.94ppm, the power supply rejection ratio is -81dB, the power consumption is 17.6uW,
    and the output voltage offset is 0.15%.

    Abstract........................................................................................................................II 第 1 章 緒論...........................................................................................................1 1-1 研究背景與動機................................................................................................1 1-2 論文架構............................................................................................................3 第 2 章 基本偏壓電路與低功耗電壓源...............................................................4 2-1 基本偏壓電路....................................................................................................4 2-1-1 電阻分壓................................................................................................4 2-1-2 固定轉導值電壓源................................................................................6 2-1-3 寬擺幅電流源........................................................................................8 2-1-4 寬擺幅固定轉導值電壓源..................................................................10 2-2 低功耗電壓源 ...................................................................................................12 2-2-1 基本低功耗電壓源架構............................................................................12 2-2-2 基底偏壓補償............................................................................................19 第 3 章 高精度帶隙參考電壓源..........................................................................23 3-1 帶隙參考電壓源..............................................................................................23 3-1-1 負溫度係數電壓..................................................................................24 3-1-2 正溫度係數電壓..................................................................................25 3-1-3 電壓模式帶隙參考電壓源..................................................................25 3-2 雜訊..................................................................................................................27 3-2-1 熱雜訊........................................................................................................27 3-2-2 閃爍雜訊....................................................................................................29 3-3 動態偏移雜訊消除技術..................................................................................30 3-3-1 自動歸零放大器..................................................................................32 3-3-2 截波穩定放大器..................................................................................35 3-4 MOS 與 BJT 元件偏移特性............................................................................39 3-5 參考電壓源參數..............................................................................................46 3-5-1 溫度係數..............................................................................................46 3-5-2 線性靈敏度..........................................................................................47 3-5-3 電源抑制比..........................................................................................47 3-5-4 輸出變異量..........................................................................................47 第 4 章 電路設計與實現......................................................................................48 4-1 超低功耗電壓源與高精度帶隙參考電壓源..................................................48 4-1-1 設計標的..............................................................................................48 VI 4-2 低功耗參考電壓源 ..........................................................................................49 4-3 高精度帶隙參考電壓源 ...................................................................................53 4-4 佈局考量 ........................................................................................................59 4-4-1 隨機不匹配誤差........................................................................................60 4-4-2 系統不匹配誤差........................................................................................60 4-4-3 多重元件佈局............................................................................................61 4-4-4 訊號線佈局考量........................................................................................61 第 5 章 模擬與量測結果.....................................................................................63 5-1 模擬環境考量..................................................................................................63 5-2 低功耗電壓源模擬結果..................................................................................65 5-2-1 溫度係數模擬......................................................................................65 5-2-2 電源抑制比模擬..................................................................................68 5-2-3 線性調節率模擬..................................................................................70 5-2-4 輸出偏移率模擬..................................................................................72 5-3 高精度帶隙參考電壓源模擬結果..................................................................73 5-3-1 溫度係數模擬......................................................................................73 5-3-2 電源抑制比模擬..................................................................................76 5-3-3 線性調節率模擬..................................................................................77 5-3-4 輸出偏移率模擬..................................................................................78 5-3-5 迴路穩定性..........................................................................................80 5-4 電路佈局圖 .......................................................................................................81 5-5 量測環境考量 ...................................................................................................82 5-6 低功耗參考電壓源之量測結果 .......................................................................84 5-7 高精度帶隙參考電壓源之量測結果 ...............................................................86 第 6 章 結論與未來展望.....................................................................................89 6-1 結論..................................................................................................................89 6-2 效能比較..........................................................................................................90 6-3 未來展望..........................................................................................................91 參考文獻..................................................................................................................93

    [1] Industrial Technology Research Institute: Attractive opportunities in the 5G AIoT
    market.(2022).
    Avalible:https://ictjournal.itri.org.tw/content/Messagess/contents.aspx?PView=1
    &SiteID=654246032665636316&MmmID=654304432122064271&SSize=10&
    MSID=1162364334722135450
    [2] DIGITINES: Equipment failures must be accompanied by thermal phenomena
    Smart factory thermal image analysis has great potential for application.(2020).
    Avalible:https://www.digitimes.com.tw/iot/article.asp?cat=158&cat1=20&cat2=
    10&id=0000564988_e8olw6i57ojlkp9vq70kx
    [3] ROHm:什麼是電阻溫度係數。檢自:https://www.rohm.com.tw/electronicsbasics/resistors/r_what9
    [4] B. Schweber(2019/01)。使用固態技術在 IoT 應用中有效感測溫度。檢自:
    https://www.digikey.tw/zh/articles/effectively-sense-temperature-iot-applications--
    solid-state-technology
    [5] Bird(2019/04)。【Maker 電子學】淺談負溫度係數熱敏電阻的原理與應用。
    https://makerpro.cc/2019/04/the-principles-and-application-of-ntc-thermistor/.
    [6] 張隆國,陳鵬宇(2005)。 “以高線性度 Gm-C 為架構的可程式化類比陣列”,國
    立交通大學,電機與控制工程學系。
    [7] A.Jones and Ken Martin “Analog Integrated Circuit 4rd”,Wiley York,2001.
    [8] Wei Zhao, Sreejit Chakravarty, Junxia Ma, Narendra Devta-Prasanna, Fan
    Yang,“ A novel method for fast identification of peak current during test”, IEEE
    30th VLSI Test Symposium (VTS),2012.
    [9] Mingoo Seok, Gyouho Kim, David Blaauw, and Dennis Sylvester, “A Portable 2-
    Transistor Picowatt Temperature Compensated Voltage Reference Operating at
    0.5 V”, IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 47, NO. 10,
    OCTOBER 2012.
    [10] Arthur Campos de Oliveira, David Cordova, Hamilton Duarte Klimach, Sergio
    Bampi, “A 0.45 V, 93 pW temperature-compensated CMOS voltage reference. ”
    IEEE 8th Latin American Symposium on Circuits & Systems (LASCAS). IEEE,
    2017.
    [11] Jingfeng Liu, Quan Li,Xin Liu ,Zhiqiang Li, Yu Liu,Zhiting Lin ,and Xiulong Wu,
    “ Picowatt 0.5V Supply with 3ppm/°C CMOS Voltage Reference for Energy
    Harvesting System”, IEICE Electronics Express, Vol.*, No.*, 1–6,2018.
    [12] P. Luong, C. Christoffersen, C. Rossi-Aicardi, and C. Dualibe, “Nanopower, sub1 V, CMOS voltage references with digitallytrimmable temperature coefficients,”
    IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 64, no. 4, pp. 787–798, Apr. 2017.
    [13] Yuwei Wang, Ruizhi Zhang, Quan Sun,Hong Zhang,“A 0.5 V, 650 pW, 0.031%/V
    Line Regulation Subthreshold Voltage Reference”, ESSCIRC 2018 - IEEE 44th
    European Solid State Circuits Conference (ESSCIRC),2018.
    [14] Ali Azam, Zhidong Bai, Darren Korth, Jeffrey Sean Walling, “ A 0.35V 12.9pW
    8.3ppm/0 C 0.012%/V Feedback-controlled Voltage Reference in 65 nm
    CMOS”, 2018 16th IEEE International New Circuits and Systems Conference
    (NEWCAS),2018.
    [15] B. Razavi, Design of Analog CMOS Integrated Circuits, 2nd ed, McGraw-Hill,
    2016.
    [16] 楊澤勝, 蘇朝琴(2012)。“ 0.5-V 低電壓類比前端積體電路應用於生醫訊號紀
    錄”, 國立交通大學,電控工程研究所。
    [17] 維基百科:閃爍雜訊。檢自:
    https://zh.wikipedia.org/wiki/%E9%97%AA%E7%83%81%E5%99%AA%E5%
    A3%B0
    [18] Xiao Yang, Yang Zhang, Wei-wei Huang, Chao-dong Ling, “Low Power Chopper
    Amplifier without LPF”, 2010 IEEE Asia Pacific Conference on Circuits and
    Systems,2010.
    [19] Ahmed Reda Mohamed, Mohamed F Ibrahim, and Fathi Farag,“ Input Offset
    Cancellation Trimming Technique for Operational Amplifiers,”Saudi
    International Electronics, Communications and Photonics Conference,2013.
    [20] Christian C. ENZ, and Gabor C. Themes, “Circuit Techniques for Reducing the
    Effect of OP-Amp Imperfections: Autozeroing, correlated Double Sampling, and
    Chopper Stabilization ”, Proc. IEEE, November 1996.
    [21] Huachao Xu , Yuanzhi Zhang , Ke Liang , Jinlong Hu , Chao Lu , Guofeng Li, “A
    2.1-ppm/°C all-MOSFET Voltage Reference with a 1.2-V Supply Voltage”,
    IEICE Electronics Express,2018.
    [22] M. J. M. Pelgrom, A. C. J. Duinmaijer, A. P. G. Welbers, “Matching properties of
    MOS transistors, ” IEEE Journal of Solid-State Circuits, vol. 24, no. 5, pp. 1433-
    1439, 1989.
    [23] D. Xin, H. Chengming, X. Hanqing, C. Degang, and R. Geiger, “An N/sup th/
    order central symmetrical layout pattern for nonlinear gradients cancellation”, in
    2005 IEEE International Symposium on Circuits and Systems,2005, pp. 4835-
    4838 Vol. 5.
    [24] Jingfeng Liu, Quan Li, Xin Liu, Zhiqiang Li, Yu Liu, Zhiting Lin, Xiulong Wu,
    “Picowatt 0.5 V supply with 3 ppm/°C CMOS voltage reference for energy
    harvesting system”, IEICE Electronics Express, 2018
    [25] P. K. Pal, A. Kumar Dubey, A. Kumar, V. Varshney and R. K. Nagaria, “A 0.55V
    28.6ppm/°C Nanopower Subthreshold Voltage Reference with Body Biasing,"
    2018 15th IEEE India Council International Conference (INDICON), 2018, pp. 1-
    6.
    [26] Keng Chen, Luca Petruzzi, Ronald Hulfachor, Marvin Onabajo, “A 1.16-V 5.8-
    to-13.5-ppm/°C Curvature-Compensated CMOS Bandgap Reference Circuit With
    a Shared Offset-Cancellation Method for Internal Amplifiers“, JOURNAL OF
    SOLID-STATE CIRCUITS, VOL. 56, NO. 1, JANUARY 2021.
    [27] D.Osipov,S.Paul,“Compact extended industrial range CMOS current
    references”,IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 66, no. 6, pp. 1998–
    2006, Jun. 2019.
    [28] Lianxi Liu, Xufeng Liao, Junchao Mu, “A 3.6 μVrms Noise, 3 ppm/°C TC
    Bandgap Reference With Offset/Noise Suppression and Five-Piece Linear
    Compensation”, IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I:
    REGULAR PAPERS, VOL. 66, NO. 10, OCTOBER 2019.
    [29] Hou-Ming Chen, Chang-Chi Lee, Shih-Han Jheng, Wei-Chih Chen,and Bo-Yi
    Lee,“A Sub ppm/ ° C precision bandgap reference with AdjustedTemperatureCurvature compensation,” IEEE Trans. Circuits Syst. I, Reg. Papers,
    vol. 64, no. 6, pp. 1308–1317, Jun. 2017.

    無法下載圖示 全文公開日期 2028/08/07 (校內網路)
    全文公開日期 2028/08/07 (校外網路)
    全文公開日期 2028/08/07 (國家圖書館:臺灣博碩士論文系統)
    QR CODE