簡易檢索 / 詳目顯示

研究生: 徐子軒
Zi-Xuan Xu
論文名稱: 用於量子位元驅動之直接數字合成器與高斯脈波調變器
Direct Digital Synthesizer and Gaussian Pulse Modulator for Qubit Driver
指導教授: 陳筱青
Hsiao-Chin Chen
口試委員: 姚嘉瑜
Chia-Yu Yao
邱弘緯
Hung-Wei Chiu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 46
中文關鍵詞: 直接數字合成器數控振盪器查表法流水線CORDIC演算法高斯脈衝調變保真度量子位元控制
外文關鍵詞: direct digital synthesizer, numerically controlled oscillator, Gaussian, fidelity, qubit control
相關次數: 點閱:100下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文介紹了一種用於量子位元驅動的直接數字合成器 (DDS)。 為降低硬件成本,採用流水線 CORDIC 演算法結合查找表(LUT)壓縮法,硬件成本較傳統 DDS 降低 45%,並且達到 SFDR > 58 dB。此設計是一數位集成架構,所提出的高斯脈波調變器可提供輸出微波脈衝的相位、振幅和頻率的完全可編程性。此設計採用台積電 90 奈米CMOS技術實現,其中NCO的最高工作頻率為 500 MHz,功率消耗為 21.75 mW,有效面積為 0.023 mm2。為了達到 1 GHz 的數據帶寬,使用了時間交織的技術,最終,在 1 GHz 數據帶寬內實現了 58 dB 的 SFDR,可實現高保真度的量子位元控制。


    This paper presents a direct digital synthesizer (DDS) for qubit drives. In order to reduce the hardware cost, the pipeline CORDIC algorithm combined with the look-up table (LUT) compression method is adopted, the hardware cost is reduced by 45% compared with the traditional DDS, and the SFDR > 58 dB is achieved. The design is a digitally integrated architecture, and the proposed Gaussian pulse modulator provides full programmability of the phase, amplitude, and frequency of the output microwave pulse. This design is implemented using TSMC 90-nm CMOS technology. The max operating frequency of the NCO is 500 MHz, the power consumption is 21.75 mW, and the effective area is 0.023 mm2. In order to achieve a data bandwidth of 1 GHz, time-interleaving technology is used. Finally, A 58 dB SFDR is achieved within a 1 GHz data bandwidth, enabling high-fidelity qubit control.

    摘要 III Abstract IV 誌謝 V Table of Contents VII List of Figures VIII List of Tables IX Chapter 1 : Introduction 1 1.1 Background and Motivation 1 Chapter 2 : NCO (1st Version) 7 2.1 Numerically Controlled Oscillator Architecture 7 2.2 Phase Accumulator (PA) 10 2.3 Rotation (ROT) 10 Chapter 3 : NCO (Final Version) 16 3.1 The LUT-ROT Architecture of NCO 16 3.2 LUT Compression 17 3.3 LUT 18 Chapter 4 : Gaussian Pulse Modulator 20 4.1 Architecture of Gaussian pulse modulator 21 4.2 Qubit manipulation 22 Chapter 5 : Implementation Result 23 5.1 Design Flow 23 5.2 CHIP layout 25 5.3 Measurement and Simulation Results of NCO 26 5.4 Simulation Result of NCO with Modulator 30 Chapter 6 : Conclusion 33 Reference 34 Appendix 36

    [1] M. Reiher, N. Wiebe, K. M. Svore, D. Wecker, and M. Troyer, “Elucidating reaction mechanisms on quantum computers,” Proc. Nat. Acad. Sci. USA, vol. 114, no. 29, pp. 7555–7560, Jul. 2017.
    [2] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, “Surface codes: Towards practical large-scale quantum computation,” Phys. Rev. A, Gen. Phys., vol. 86, no. 3, Sep. 2012, Art. no. 032324.
    [3] Heisenberg, W. (1927), "Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik", Zeitschrift für Physik (in German), 43 (3–4): 172–198, March 21, 1927.
    [4] B. Patra et al., "19.1 A Scalable Cryo-CMOS 2-to-20GHz Digitally Intensive Controller for 4×32 Frequency Multiplexed Spin Qubits/Transmons in 22nm FinFET Technology for Quantum Computers," 2020 IEEE International Solid- State Circuits Conference - (ISSCC), 2020, pp. 304-306, doi: 10.1109/ISSCC19947.2020.9063109.
    [5] A. L. Bramble, "Direct digital frequency synthesis," Froc. 35th Annu. Preq. Contr. Symp., USERACOM (Ft. Monmouth, NJ), pp. 406- 414, May 1981.
    [6] J. E. VoIder, "The CORDIC trigonometric computing technique," IE Trans. Electron. Comput., vol. EC - 8, pp. 330 - 334, Sep. 1959.
    [7] J. S. Walther, "A United Algorithm for Elementary Functions," Proc. Joint Spring Comput. Can/., vol. 38, pp. 379 - 385, Jul. 1971.
    [8] J. P. G. van Dijk et al., “Impact of classical control electronics on qubit fidelity,” Phys. Rev. A, Gen. Phys., vol. 12, no. 4, Oct. 2019
    [9] Marco Cavallaro, Tino Copani, and Giuseppe Palmisano, Senior Member, “A Gaussian Pulse Generator for Millimeter-Wave Applications,” IEEE, VOL. 57, NO. 6, JUNE 2010.
    [10] J. P. G. van Dijk et al., “Impact of classical control electronics on qubit fidelity,” Phys. Rev. A, Gen. Phys., vol. 12, no. 4, Oct. 2019, Art. no. 044054,
    doi: 10.1103/PhysRevApplied.12.044054.
    [11] J. P. G. van Dijk, B. Patra, S. Pellerano, E. Charbon, F. Sebastiano, and M. Babaie, “Designing a DDS-based SoC for high-fidelity multiqubit control,” IEEE Trans. Circuits Syst. I, Reg. Papers, early access, Sep. 9, 2020.
    [12] M. Bergeron and A. N. Willson, “A 1-GHz direct digital frequency synthesizer in an fpga,” in IEEE International Symposium on Circuits and Systems, 2014, pp. 329-332.
    [13] H. C. Yeoh, J. -H. Jung, Y. -H. Jung and K. -H. Baek, "A 1.3-GHz 350-mW Hybrid Direct Digital Frequency Synthesizer in 90-nm CMOS," in IEEE Journal of Solid-State Circuits, vol. 45, no. 9, pp. 1845-1855, Sept. 2010, doi: 10.1109/JSSC.2010.2056830.
    [14] L. Yuan, Q. Zhang, and Y. Shi, “A 2GHz direct digital frequency synthesizer based on multi-channel structure,” in IEEE International Symposium on Circuits and Systems, 2015, pp. 3064–3067.
    [15] T. Yoo et al., "A 2 GHz 130 mW Direct-Digital Frequency Synthesizer With a Nonlinear DAC in 55 nm CMOS," in IEEE Journal of Solid State Circuits, vol. 49, no. 12, pp. 2976- 2989, Dec. 2014, doi: 10.1109/JSSC.2014.2359674.
    [16] J. Park et al., "A Fully Integrated Cryo-CMOS SoC for State Manipulation, Readout, and High-Speed Gate Pulsing of Spin Qubits," in IEEE Journal of Solid-State Circuits, vol. 56, no. 11, pp. 3289-3306, Nov. 2021.

    無法下載圖示 全文公開日期 2025/01/31 (校內網路)
    全文公開日期 2025/01/31 (校外網路)
    全文公開日期 2025/01/31 (國家圖書館:臺灣博碩士論文系統)
    QR CODE