簡易檢索 / 詳目顯示

研究生: 律韶光
Shao-kuang Lu
論文名稱: 電力交界鋼軌夾膠接頭電弧改善設備之工程可靠度分析
The Study on Reliability of Arc Eliminated Equipment for Insulated Rail Joint of transfer track in Depot boundary Area
指導教授: 李永輝
Yung-Hui Lee
口試委員: 楊文鐸
Wen-Dwo Yang
李永輝
Yung-Hui Lee
謝光進
Kong-King Shieh
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 66
中文關鍵詞: 鋼軌夾膠接頭
外文關鍵詞: Insulated Rail Joint
相關次數: 點閱:169下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 捷運系統之車行鋼軌,除扮演支撐車體與導引列車行駛方向的角色外,亦多兼具列車牽引電流之負回流路徑功能。當列車負回流經車行鋼軌流回變電站時,鋼軌將因自身的電阻而於其上產生壓降,此壓降使鋼軌對地存在電位差,稱之鋼軌電位昇(Rail Potential Rise)。臺北捷運系統不論是機廠軌道或主線軌道,在設計上,牽引電力之正電及負電均是分開的,而此不同區間之鋼軌則在機廠邊界與正線交界處,透過鋼軌夾膠絕緣接頭(以下簡稱I.R.J.)加以隔離。因I.R.J.兩端之鋼軌因分屬不同的牽引電力系統,故在I.R.J.兩端存有經常性之電位差(-50V DC與+200V DC之間),當電聯車進出機廠區且跨越此I.R.J.處時,每逢電聯車鋼輪在離開I.R.J.端鋼軌之瞬間,將在鋼輪與鋼軌接觸面間產生電弧,此電弧造成電聯車鋼輪面與I.R.J.兩端鋼軌面發生電焊侵蝕現象。
    日前在捷運新店機廠小碧潭站端附近,發現鋼軌對地電位有偏高現象,且電聯車鋼輪面與主線及機廠間之鋼軌面間,電焊侵蝕現象有日趨嚴重之情形,為徹底解決捷運運輸之潛在危機,經臺北市捷運工程局相關單位,參考國外先進工業國家之案例,提出加裝電位差改善設備之方案。
    本研究係針對上述電弧改善設備,在設計、製造、安裝及運轉過程中,是否能夠依捷運局技術規範之需求,在契約規定之180天可靠度驗證期間內,當電聯車行經主線與機廠間之IRJ處時,就設備切換形情及電弧消除之狀況加以分析。並自可靠度驗證測試報告中,萃取相關佐證資訊加以研析,於末來捷運路網興建時,在電弧改善方面還有那些事項,提出建議及改善方式。


    Electrical power for Taipei Metro system EMU, supplied by Taiwan Power Company (TPC) to the Metro System Engineering Department at a potential of 161kV, following receipt by Bulk Supply Substations (BSS) managed by the Department of Rapid Transit (DORT), is stepped down from 161kV to 22.8kV and distributed to downstream Traction Supply Substations (TSS). The TSS, after transforming and rectifying this 22.8kV AC power into 750V DC power, supply positive current to downstream conductor rails to serve as an EMU motive power source. Negative current, after use by the EMU, flows to the running rail via its wheels and returns to the TSS negative bus, completing the DC circuit.
    The running rails in a rapid transit system, apart from supporting and guiding the car body, also serve as the traction current return path. Negative EMU current returning to the TSS via the wheel and running rail undergoes a voltage drop (called Rail Potential Rise) due to the electrical resistance from the rail. Whether the rail is located in the DORTS depot or in the main line, the negative and positive traction power current are by design separated, and in the area depot boundary and the main line, Insulated Rail Joint (IRJ) are used to increase the separation. Since the rail between the two extremities of the IRJ belongs to different power systems, there usually exists a potential difference (-50V DC to +200V DC). Each time the EMU wheel leaves the IRJ, an arc will be produced between the wheel and the rail, leading to corrosion between the EMU wheel and the tracks.
    Recently, DORTS found the electric potential in the vicinity of Hsiao Pitan Station to be on the high side and the corrosion between the EMU wheel and rails of two extremities of IRJ becoming more serious daily, so in order to thoroughly eliminate this potential risk, relevant units of the DORTS Engineering Department, after considering examples from other advanced industrialized countries, proposed a plan to install equipment to ameliorate the electric potential difference.

    中文摘要 II 英文摘要 III 誌 謝 IV 目 錄 V 表 目 錄 IX 名詞縮寫說明 X 符號索引 XII 圖表索引 XIV 第壹章 緒論 1 第一節、研究背景與動機 1 第二節、研究目的 2 第三節、研究範圍 3 第四節、研究流程 5 第貳章 文獻探討 7 第一節、可靠度之概論 7 第二節、可靠度與故障率 12 第三節、捷運機電設備可靠度規範 18 第三章 研究設計與方法 23 第一節、可靠度驗證測試計畫 23 第二節、可靠度驗證程序書 24 第三節、可靠度驗證之通過/失敗準則 28 第四節、指數模式的時間固定之可靠度與壽命估計與分析 29 第肆章 研究結果 32 第一節、可靠度驗證分析結果 32 第二節、故障分析 34 第三節、時間固定測試之可靠度與壽命估計與分析之結果 35 第四節、電流及電壓 38 第伍章 結論與後續研究建議 41 第一節、結論 41 第二節、建議 43 參考文獻 47 一、中文部份 47 二、英文部份 49 附 錄 一 51 附 錄 二 57

    1.趙浡霖譯,「可靠度工程─新技術與應用」,科技圖書公司,民國七十三年。
    2.趙浡霖譯,「品管、可靠度及工程設計」,科技圖書公司,民國七十五年。
    3.捷運局,「供電系統標特別技術規範」,民國七十九年。
    4.捷運局,「供電系統標特別技術規範」,民國八十一年。
    5.蔡祥智,「可靠度模式與可靠度配當」,可靠度設計工程技術研習會,民國八十三年。
    6.捷運局,「台北捷運系統系統保證計劃書廠商指南」,民國八十五年。
    7.柯輝耀,「可靠度保證─工程與管理技術之應用」,中華民國品質學會,民國八十六年。
    8.鄭春生, 「品質管理」,育友圖書有限公司,民國八十六年。
    9.捷運局,「供電系統標特別技術規範」,民國八十七年。
    10.黃厚生,「捷運電聯車可靠度評估」,清雲學報第20卷,民國八十九年。
    11.李美蘭,「台北捷運系統淡水-新店線車行軌道之接觸電位分析」,國立台灣大學碩士論文,民國八十九年月。
    12.徐世輝,「受衝擊的系統下其較一般化之逐次預防維修策略」,民國八十九年。
    13.曾乙申,「工業級捷運與輕軌供電系統模擬軟體之開發」,中華民國第22屆電力工程研討會論文集,民國九十年。
    14.曾乙申,「捷運與輕軌供電系統電腦化模擬(上)-列車運行模擬」,捷運技術,27期,民國九十一年。
    15.曾乙申,「接地、搭接與鋼軌絕緣對捷運系統鋼軌電位昇與雜散電流之影響」,中華民國第23屆電力工程研討會論文集,民國九十一年。
    16.曾乙申,「捷運系統之鋼軌電位昇與雜散電流模擬」,中華民國第23屆電力工程研討會論文集,民國九十一年。
    17.曾乙申,「捷運系統鋼軌電位昇與雜散電流現場量測」,中華民國第23屆電力工程研討會論文集,民國九十一年。
    18.葉瑞徽,「全面生產維修策略之理論與實務應用研究-子計畫三:產品保證對最佳維修策略之影響(2/3)」,民國九十一年。
    19.中華民國第五屆可靠度與維護度技術研討會論文集,民國九十二年。
    20.王國雄、蔡有藤、蔡林昌,「以妥善率規劃系統預防維護之研究」,民國九十二年。
    21.呂英志,「可靠度應用於交通運輸系統之回顧與展望」,民國九十三年。
    22.徐世輝, 「品質管理」,華泰書局,民國九十四年。
    23.許臨國,「系統保證」,台北捷運局機電系統訓練課程講議,第十七章。
    24.張明坤,「可靠度理論與其在捷運系統應用上知實務探討」捷運技術第16期。
    1.European Standard, Railway Applications: The Specification and Demonstration of Reliability, Availability, Maintainability and Safety, 2nd ed.
    2.Engineering Design Handbook: Development Guide for Reliability, Part II Design for Reliability, AMCP706-196; published by Headquarters, US Army Material Command.(1976)
    3. Wang K. S, Tsia Y. T, Teng H. Y, “Optimizing preventive maintenance for mechanical components using genetic algorithms”Reliability Engineering and System Safety, Vol.74,pp.89-97 (2001)
    4.Crowder S. V, “How to Determine Component-Based Preventiv Maintenance Plans”,Statistical Case Studies for Industrial Process Improvement (1997)
    5. Lewis D. K, Hutchens C, and. Smith J. M, “Experimentation for Eqipment Reliability Improvement”, Statistical Case Studies for Industrial Process Improvement (1997).
    6.Burgen A. R, Power Systems Analysis (Second Edition), Prentice-Hall Inc., New Jersey, 2000.
    7. Stott B, Load Flows for AC and DC Integrated AC/DC Systems, Ph.D. Thesis, Manchester University, U.K., Oct. 1971.
    8.Tinney W. F, and. Walker J. W, “Direct Solutions of Sparse Network Equations by Optimally Ordered Triangular Factorization,” Proc. IEEE, Vol. 55, No. 11, pp. 1801-1809, Nov. 1967.
    9. ZSP/CHEM JV-CTCI, Nankang/Pacnchiao lines Contract CN333 / CP343 Power Supply, DC Study, 1994.
    10.Chang C. S, and Tian L. F, “Worst-case identification of touch voltage and stray current of DC railway system using genetic algorithm,”IEE Proc.-Electric Power Applications, Vol. 146, No. 5, pp. 570-576, September 1999.
    11.Moody K. J, ‘Stray current characteristics of grounded, ungrounded, and diode grounded dc transit systems’, CORROSION/94, Baltimore, pp. 331-342, March 1994.
    12.Yu J. G, ‘The effects of earthing strategies on rail potential and stray currents in D.C. transit railways’, International Conference on Developments in Mass Transit Systems, pp. 303-309, April 1998.
    13.Lee C. H, and Wang H. M, ‘Effects of grounding schemes on rail potential and stray currents in Taipei Rail Transit Systems’, IEE Proc.-Electric Power Applications, Vol. 148, No. 2, pp. 148-154, March 2001.
    14.Yu J.G, and Goodman J. C, ‘Modeling of rail potential rise and leakage curent in dc rail transit systems’, IEE Colloquium on Stray Current Effects of DC Railways and Tramways, pp. 221-226, London, UK, October 1990.
    15. Yu J.G, and Goodman J. C, ‘Computer simulation of stray curents in dc supplied rail transit systems and their corrosive effects’, Proceedings of IMechE International Conference Transit 2020, pp. 121-127, London, UK, October 1990.
    16.Cai Y, Irving M. R, and Case S. H, ‘Modelling and numerical solution of multibranched dc rail traction power systems’, IEE Proc.-Electric Power Applications, Vol. 142, No. 5, pp. 323-328, September 1995.
    17.Chang C. S, and Tian L. F, ‘Worst-case identification of touch voltage and stray current of DC railway system using genetic algorithm’, IEE Proc.-Electric Power Applications, Vol. 146, No. 5, pp. 570-576, September 1999.
    18.Tobias P. A, Trindade D. C,Applied Reliability, 2nd ed.

    QR CODE