簡易檢索 / 詳目顯示

研究生: 角順平
Shun-ping Chiao
論文名稱: 摻鐵硒化釕黃鐵礦相觸媒對氧還原反應催化作用
Electrocatalysis of Iron-Substituted RuSe2 Pyrites toward Oxygen Reduction Reaction
指導教授: 蔡大翔
Dah-Shyang Tsai
口試委員: 萬本儒
Ben-Zu Wan
林昇佃
Shawn D. Lin
戴龑
Yian Tai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 116
中文關鍵詞: 硒化釕觸媒氧還原反應陰極觸媒觸媒穩定性甲醇容忍性選擇性
外文關鍵詞: Ruthenium selenide catalyst, Oxygen reduction reaction, Cathode catalyst, Catalyst stability, Methanol tolerance, Selectivity
相關次數: 點閱:354下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

(Ru,Fe)Sex/C氧還原反應觸媒的合成分成兩步驟進行,首先混合羰基釕與羰基鐵分散於碳黑上,接著進行固態硒化反應。我們先前的研究發現,經由氫退火處理合成出耐久性黃鐵礦結構RuSe2/C觸媒具有相當不錯的氧還原活性與甲醇容忍性,且H2O2產率小於2%。本論文研究探討摻過渡金屬Fe希望增加RuSe2/C的氧還原活性,降低Ru金屬的負載量與成本,改變氫退火溫度、Ru/Fe原子比例、以及Se/(Ru+Fe)原子比例,藉由XRD、EDX與TEM的分析了解觸媒的結構、元素組成、晶格常數與粒徑大小,而電化學特性則使用旋轉(環)盤電極測試陰極氧還原反應之行為,探討觸媒對氧還原反應催化作用。
在400oC氫退火處理下表現出良好的氧還原活性,為最適之處理溫度。黃鐵礦相(Ru,Fe)Se2/C觸媒最高鐵含量比例約為50%,晶格常數會隨著鐵含量增加而減少。氧還原活性則會隨著鐵含量增加而有明顯的增加,此外黃鐵礦相(Ru,Fe)Se2/C具有良好的甲醇容忍性與低H2O2的產率,其中(Ru0.54Fe0.46)Se1.94/C展現最佳的氧還原活性與商用Pt/C觸媒(Johnson-Matthey)在電流密度1 mA cm-2下差0.07V。在典型陰極操作電位0.4~0.6V下,黃鐵礦相(Ru,Fe)Se2/C觸媒H2O2產率會隨著鐵含量比例增加而增加,但H2O2百分比皆小於2.5%。進一步改變不同Se/(Ru+Fe)原子比例, 觸媒活性會隨著Se含量減少而下降,但不影響H2O2的產率。(Ru,Fe)Se2/C觸媒穩定性介於耐久性RuSe2/C與參考文獻上作法熱裂解十二羰基釕RuSecluster/C 觸媒之間。


(Ru,Fe)Sex/C catalysts for oxygen reduction reaction (ORR) have been synthesized in two consecutive steps, in which a powder mixture of carbonyl ruthenium and iron loaded on the carbon black was prepared first, followed by selenization in hydrogen annealing at 300~500°C with excess selenium. Our previous works indicate that hydrogen annealing produced a durable RuSe2/C catalyst with pyrite structure and lasting catalytic activity toward ORR, also less than 2% yield in H2O2. In this study, iron has been substituted for ruthenium to reduce its noble metal loading and the materials cost. The catalyst structure and composition were characterized by X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM), and energy dispersive X-ray (EDX) analysis. The electrochemical activity was measured using a rotating ring-disk electrode R(R)DE.

The hydrogen annealing temperature of 400°C is optimum in terms of ORR activity. The maximum iron content of (Ru,Fe)Se2 catalyst of pyrite structure is around 50 %. Excess iron in the precursor will be carried away by hydrogen. The pyrite lattice constant of (Ru,Fe)Se2 catalyst decreases with increasing iron content. When the ORR activity is expressed as current per unit area, the activity increases somewhat with increasing iron content. If the ORR activity is expressed as current per unit Ru mass, the activity is enhanced significantly. Meanwhile, the (Ru,Fe)Se2/C catalyst demonstrates excellent methanol tolerance and low yield in H2O2. For instance, the catalyst of (Ru0.54Fe0.46)Se1.94/C exhibits the highest ORR activity, which presents a potential difference of 0.07 V in comparison with a commercial Pt/C catalyst (Johnson-Matthey) at 1 mA cm-2 current. The H2O2 yield is <2.5% in 0.4~0.6 V, which is slightly higher than that of RuSe2/C catalyst. On further decreasing the Se/(Ru+Fe) ratio, the catalytic activity decreases. But doesn’t influence the H2O2 yield. The stability of (Ru,Fe)Se2/C catalyst is also between the durable RuSe2/C catalyst and the the RuSecluster/C catalyst prepared by thermolysis of Ru3(CO)12.

中文摘要 英文摘要 致謝 目錄 圖目錄 表目錄 第一章 緒論 第二章 論文基礎與文獻回顧 2.1 燃料電池 2.2 直接甲醇燃料電池(DMFC) 2.3 DMFC陰極電化學反應與觸媒 2.3.1 氧還原反應(Oxygen-Reduction Reaction, ORR) 2.3.2 氧還原反應觸媒 2.4 研究動機 第三章 實驗方法與分析儀器 3.1 實驗藥品及設備 3.2 儀器設備 3.3 實驗方法 3.3.1 碳黑之前處理 3.3.2 有機溶劑之前處理 3.3.3 氮氣與氫氣之純化 3.3.4 陰極觸媒製備 3.3.4.1 碳支撐釕、鐵羰基複合物粉末的製備 3.3.4.2 鐵摻雜碳黑支撐硒化釕固溶體奈米觸媒粉末的製備 3.3.5 材料鑑定與分析 3.3.5.1 X光繞射晶相分析 3.3.5.2 場發射穿透式電子顯微鏡分析(FEG-TEM) 3.3.5.3 X光能量散佈儀元素分析(EDX) 3.3.5.4 電化學特性測試 第四章 實驗結果與討論 4.1 觸媒元素組成分析、結構及化學計量關係 4.1.1 合成不同氫退火溫度處理之摻鐵硒化釕(Ru,Fe)Sex(x=2)觸媒之元素組成EDX分析與結構分析 4.1.2 合成硒化鐵FeSe 觸媒經300 oC與400 oC氫退火處理之元素組成EDX分析與結構分析 4.1.3 結論合成不同釕/鐵原子比例的二硒化釕鐵固溶體(Ru,Fe)Se x(x2)觸媒經400oC氫退火處理之元素組成EDX分析與結構分析 4.1.4 合成不同硒/(釕+鐵)原子比例之硒化釕鐵(Ru,Fe)Sex觸媒經400oC氫退火處理之EDX與結構分析與結構分析 4.2 X光繞射圖譜分析(XRD pattern analysis) 4.2.1 XRD繞射圖譜之晶粒計算與晶格常數 4.3 場發射穿透式電子顯微鏡分析(FEG-TEM) 4.4 電化學特性測試 4.4.1 氧還原反應之線性掃描伏安分析(Linear Sweep Voltammetry) 4.4.1.1 二硒化鐵300 oC氫退火處理後之氧還原極化曲線 4.4.1.2 氫退火溫度對觸媒活性影響 4.4.1.3 鐵含量對觸媒活性之影響 4.4.1.4 硒/(釕+鐵)比例對觸媒活性之影響 4.4.2 氧還原反應路徑分析 4.4.2.1 鐵含量對觸媒H2O2產率之影響及理論計算 4.4.2.2 硒/(釕+鐵)比例對觸媒H2O2產率之影響 4.4.3 觸媒穩定性測試(Stability test) 4.4.4 觸媒甲醇容忍性測試(Methanol Tolerance) 4.5 結構效應(Structure effect) 第五章 結論 參考文獻附錄

1.Thorsten Schultz, Su Zhou, and Kai Sundmacher, Chem. Eng. Technal., 24 (2001) pp. 1223.
2.K. Kinoshita, Electrochemical oxygen technology,Wiley-interscience.
3.A.K. Shukla, and R.K. Raman, Annu. Rev. Mater. Res., 33 (2003) pp.155.
4.C. Sealy, Materialstoday, 11 (2008) pp.65-68.
5.L. Colmenares, Z. Jusys, and R.J. Behm, J. Phys. Chem. C, 111 (2007) pp.1273.
6.B.N. Grgur, N.M. Markovic, and P.N. Ross, Can. J. Chem., 75 (1997) pp.1465-1471.
7.H. Yano, M. Kataoka, H. Yamashita, H. Uchida, and M. Watanaber, Langmuir, 23 (2007) pp.6438-6445.
8.F.H.B. Lima, W. H. Lizcano-Valbuena, E. Teixeira-Neto, F. C. Nart, E. R. Gonzalez, and E. A. Ticianelli, Electrochimica Acta, 52 (2006) pp.385.
9.H. Yang, N. Alonso-Vante, J.M. Lger, and C. Lamy, Journal of Physical Chemistry B, 108 (2004) pp.1938-1947.
10.W. Yuan, K. Scott, and H. Cheng, J. Power Sources, 163 (2006) pp.323.
11.M. Wakisaka, H. Suzuki, S. Mitsui, H. Uchida, and M. Watanabe, J. Phys. Chem. C, 112 (2008) pp.2750.
12.P. Mani, R. Srivastava, and P. Strasser, J. Phys. Chem. C, 112 (2008) pp.2770.
13.B. Anderson, J. Rogues, S. Mukerjee, V. S. Murthi, N. M. Markovic, and V. Stamenkovic, J. Phys. Chem. B, 109 (2005) pp.1198.
14.M.H. Shao, T. Huang, P. Liu, J. Zhang, K. Sasaki, M.B. Vukmirovic, and R. R. Adzic, Langmuir, 22 (2006) pp.10409.
15.V. Climent, N.M. Markovic, and P.N. Ross, J. Phys. Chem. B, 104 (2000) pp.3116-3120.
16.L. Xiao, L. Zhuang, Y. Liu, J. Lu, and H. Abruna, J. AM. Chem. Soc., 131 (2009) pp.602-608.
17.S. Chinta, and J.H. Lunsford, Journal of catalysis, 225 (2004) pp.249-255.
18.J.H. Lunsford, Journal of catalysis, 216 (2003) pp.455-460.
19.D.P. Dissanayake, and J.H. Lunsford, Journal of catalysis, 206 (2002) pp.173.
20.L. Zhang, K. Lee, and J. Zhang, Electrochimica Acta, 52 (2007) pp.3088.
21.X. Li, Q. Huang, Z. Zou, B. Xia, H. Yang, Electrochimica Acta (Article in press).
22.M.H. Shao, K. Sasaki, and R.R. Adzic, J. Am. Chem. Soc., 128 (2006) pp.3526-3527.
23.G. Ramos-Sanchez, H. Yee-Madeira, and O. Solorza-Feria, Int. J. Hydrogen Energy, 33 (2008) pp.3596-3600.
24.A. Sarkar , A. Vadivel Murugan, and A. Manthiram, Jorunal of Material Chemistry, 19 (2009) pp.159-165.
25.A. Sarkar , A. Vadivel Murugan, and A. Manthiram, Physical Chemistry C, 112 (2008) pp.12037-12043.
26.X. Wang, N. Kariuki, J.T. Vaughey, J. Goodpaster, R. Kumar, and D.J. Myers, Journal of the Electrochemical Society, 155 (2008) B602-609.
27.Y. Feng, and N. Alonso-Vante, Phys. Stat. sol., 245 (2008) pp.1792-1806.
28.C.W.B. Bezerra, L. Zhang, H. Liu, K. Lee, A.L.B. Marques, E.P. Marques, H. Wang, and J. Zhang, J. Power Sources, 173 (2007) pp.891.
29.S. Baranton, C. Coutanceau, C. Roux, F. Hahn, and J. M. Leger, J. Electroanaly. Chem., 577 (2005) pp.223.
30.Y. Lu, and R. G. Reddy, Electrochimica Acta, 52 (2007) pp.2562.
31.N. Alonso-Vante and H. Tributsch, Nature, 323(1986) pp.431.
32.N. Alonso-Vante, M. Giersig, and H. Tributsch, J. Electrochem. Soc., 138 (1991) pp.639.
33.O. Solorza-Feria, K. Ellmer, M. Giersig, and N. Alonso-Vante, Electrochim. Acta, 39 (1994) pp.1647.
34.N. Alonso-Vante, H. Tributsch, and O. Solorza-Feria, Electrochimica Acta, 40 (1995) pp.567.
35.T. J. Schmidt, U. A. Paulus, H. A. Gasteiger, N. Alonso-Vante, and R. J. Behm, J. Electochem. Soc., 147 (2000) pp.2620.
36.N. Alonso-Vante, Fuel Cells 6 (2006) pp.182.
37.M. Bron, P. Bogdanoff, S. Fiechter, I. Dorbandt, M. Hilgendorff, H. Schulenburg, and H. Tributsch, J. Electroanalytical Chemistry, 500 (2001) pp.510.
38.M. Bron, P. Bogdanoff, S. Fiechter, M. Hilgendorff, J. Radnik, I. Dorbandt, H. Schulenburg, and H. Tributsch, J. Electroanalytical Chem., 517 (2001) pp.85.
39.H. Cheng, W. Yuan, and K. Scott, Electrochimica Acta, 52 (2006) pp.466.
40.V. I. Zaikovskii, K. S. Nagabhushana, V. V. Kriventsov, K. N. Loponov, S. V. Cherepanova, R. I. Kvon, H. Bonnemann, D. I. Kochubey, and E. R. Savinova, J. Phys. Chem. B, 110 (2006) pp.6881.
41.L. Colmenares, Z. Jusys, and R. J. Behm, Langmuir, 22 (2006) pp.10437.
42.L. Colmenares, Z. Jusys, and R. J. Behm, J. Phys. Chem. C, 111 (2007) pp.1273.
43.N. Alonso-Vante, I. V. Malakhov, S. G. Nikitenko, E. R. Savinova, and D. I. Kochubey, Electrochmica Acta, 47 (2002) pp.3807.
44.I. V. Malakhov, S. G. Nikitenko, E. R. Savinova, D. I. Kochubey, and N. Alonso-Vante, J. Phys. Chem. B. 106 (2002) pp.1670.
45.K. Suarez-Alcantara, and O. Solorza-Feria, Electrochmica Acta, 53 (2008) pp.4981.
46.K. Suarez-Alcantara, A. Rodriguez-Castellanos, R. Dante, and O. Solorza-Feria, J. Power sources, 157 (2006) pp.114.
47.O. Solorza-Feria, S. Ramirez-Raya, R. Rivera-Noriega, E. Ordonez-Regil, and S.M. Fernandez-Valverde, Thin Solid Film, 311 (1997) pp.164.
48.S.D. Ramirez-Raya, O. Solorza-Feria, E. Ordonez-Regil, M. Benaissa, and S.M. Fernandez Valverde, NanoStructured Materials, 10 (1998) pp.1337.
49.H. Cheng, W. Yuan, K. Scott, D.J. Browning, and J.B. Lakeman, Applied Catalysis B: Environmental, 75 (2007) pp.221.
50.H. Cheng, W. Yuan, K. Scott, D.J. Browning, and J.B. Lakeman, J. Power Sources, 172 (2007) pp.597.
51.P.J. Kulesza, K. Miecznikowski, B. Baranowska, M. Skunik, A. Kolary-Zurowska, A. Lewera, K. Skunik, M. Chojak, I. Rutkoska, S. Fiechter, P. Bogdanoff, I. Dorbandt, G. Zehl, R.Hiesgen. E. Dirk, K.S. Nagabhushana, and H. Boennemann, J. Appl. Electrichem., 37 (2007) pp.1439.
52.A. Kolary-Zurowska, A. Zieleniak, K. Miecznikowski, B. Baranowska, A. Lewera, S. Fiechter,P. Bogdanoff, I. Dorbandt, R. Marassi, and P.J. Kulesza, J. Solid State Electrochem., 11 (2007) pp.915.
53.R. Gonzalez-Cruz, and O. Solorza-Feria, J. Solid State Electrochem., 7 (2003) pp.289.
54.R.G. Gonzalez-Huerta, J.A. Chavez-Carvayar, and O. Solorza-Feria, J. Power Sources, 153 (2006) pp.11.
55.H. Zhao, H.W. Schils, and C.J. Raub, J. Less-Common Met,. 113 (1985) pp.75.
56.W.G. Moffatt, The Handbook of Binary Phase Diagrams, Schenectady, N.Y.: General Electric Comp. (1988).
57.Massalski, T.B. (editor-in-chief): "Binary Alloy Phase Diagrams", Second Edition, Vol. 3, T.B. Massalski (editor-in-chief), Materials Information Soc., Materials Park, Ohio (1990).
58.JCPDS File 80-0670 Ruthenium Selenide (RuSe2).
59.W.N. Stassen, and R.D. Heyding, Canadian Journal of Chemistry, 46 (1968) pp.2159-2163.
60.J.C. Slater, J. Chem. Phys., 41 (1964) pp.3199.
61.W. Vogel, P. kaghazchi, T. Jacob, and N. Alonso-Vante, J. Phys. Chem. C, 111 (2007) pp.3908-3913.
62.JCPDS File 74-0247 Iron Selenide (FeSe2).
63.S. Tengner, Z. Anorg. Allg. Chem., 239 (1938) pp.126.
64.G. Fischer, J. Phys., 36 (1958) pp.1435.
65.T.A. Bither, C.T. Prewitt, J.L. Gillson, P.E. Bierstedt, R.P. Flippen, and H.S. Young, Solid State Commun., 4 (1966) pp.533.
66.T.A. Bither, C.T. Prewitt, J.L. Gillson, P.E. Bierstedt, R.P. Flippen, and H.S. Young, Inorg. Chem., 7 (1968) pp.2208.
67.G. Zehl, P. Bogdanoff, I. Dorbandt, S. Fiechter, K.Wippermann, and C. Hartnig, J. Appl. Electrochem., 37 (2007) pp.1475.
68.H. Cheng, W. Yuan, and K. Scott, Fuel Cells, 7 (2007) pp.16.
69.A. Bonakdarpour, C. Delacote, R. Yang, A. Wieckowski, and J.R. Dahn, Electrochemistry Communication, 10 (2008) pp.611.
70.A. Garsuch, X. Michaud, G. Wahner, O. Klepel, and J.R. Dahn, Electrochimica Acta, 54 (2009) pp.1350-1354.
71.U.A. Paulus, T.J. Schmidt, H.A. Gasteiger, and R.J. Behm, Journal of Electroanalytical Chemistry, 495 (2001) pp.134.
72.S. Gottesfeld, I.D. Raistrick, and S. Srinivasan, J. Electrochem. Soc., 134 (1987) pp.1455-1462.
73.R.C.M. Jakobs, L.J.J. Janssen, and E. Barendrecht, Electrochim. Acta, 30 (1985) pp.1085-1091.
74.S. Fiechter, I. Dorbandt, P. Bogdanoff, G. Zehl, H. Schulenburg, and H. Tributsch, J. Phys. Chem. C, 111 (2007) pp.477-487.
75.D. Cao, A. Wieckowski, J. Inukai, and N. Alonso-Vante, Journal of the Electrochemical Society, 153 (2006) A869-A874.
76.H. Tributsch, M. Born, M. Hilgendorff, H. Schulenburg, I. Dorbandt, V. Eyert, P. Bogdanoff, and S. Fiechter, J. Appl. Electrochem., 31 (2001) pp.739-748.
77.A. Lewera, J. Inukai, W.P. Zhou, D. Cao, H.T. Duong, N. Alonso-Vante, A. Wieckowski, Electrochimica 52 (2007) 5759-5765.
78.K.S. Nagabhushana, E. Dinjus, H. Bonnemann, V. Zaikovskii, C. Hartnig, G. Zehl, I. Dorvandt, S. Fiechter, and P. Bogdanoff, J. Appl. Electrochem., 37 (2007) pp.1515-1522.
79.G. Zehl, G. Schmithals, A. Hoell, S. Haas, C. Hartnig, I. Dorbandt, P. Bogdanoff, and S. Fiechter, Angew. Chem. Int. Ed., 46 (2007) pp.7311-7314.
80.M.O. Solaliendres, A. Manzoli, G.R. Salazar-Banda, K.I.B. Eguiluz, S.T. Tanimoto, and S.A.S. Machado, J. Solid state Electrochem. 12 (2008) pp.679-686.
81.H.D. Lutz, B. Muller, TH. Schmidt, and TH. Stingl, Acta Cryst., C46 (1990) pp.2003-2005.

無法下載圖示 全文公開日期 2014/07/21 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE