簡易檢索 / 詳目顯示

研究生: 邱俊銘
Chun-Ming Chiu
論文名稱: 高分子穩定雙頻長螺距膽固醇液晶混摻二色性染料之液晶元件之製備與光電性質研究探討
Fabrication and Electro-Optical Characteristics of Dye-Doped Polymer-Stablilized Dual-frequency Cholesteric Texture cells
指導教授: 李俊毅
Jiunn-Yih Lee
口試委員: 金志龍
Chih-Lung Chin
廖顯奎
Shien-Kuei Liaw
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 124
中文關鍵詞: 雙頻膽固醇液晶染料高分子穩固雙穩態智慧型窗戶
外文關鍵詞: dual-frequency cholesteric textures, dye dopend, polymer, bistable, smart windows
相關次數: 點閱:244下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文研究重點是以雙頻液晶為材料,製作成反向染料混摻高分子穩固雙頻膽固醇液晶光閥,此反向液晶光閘是由雙頻液晶HEF951700、旋光物S811、高分子RM257、二色性染料所組成。最後,藉由使用適當的旋光物濃度和高分子濃度,我們成功製備出雙穩態反向染料混摻高分子穩固雙頻膽固醇液晶光閥,其可以藉由施加低頻電場(60Hz,±32V)或高頻電場(300kHz,±32V)在散射態和穿透態之間做切換,並在移除電場後仍可維持住狀態,並降低傳統反射式膽固醇液晶元件反射可見光所需高驅動電壓。並在移除電場後仍可維持住狀態,它可以應用於綠建築中的綠能智慧型窗戶之改良。


In this study, we use a dual-frequency liquid crystal as device material, we constructed a reverse-mode dye dopend polymer stabilized dual frequency cholesteric texture (DDPSDFCT) light shutter. reverse-mode DDPSDFCT cells This were fabricated using a dual frequency liquid crystal HEF951700, chiral dopant S811, polymer RM257, Dichronic dyes. We using chiral dopant (Cc) and monomer (Cp) in specific concentrations, a bistable light shutter using reverse-mode dye dopend polymer-stabilized dual-frequency cholesteric textures (DDPSDFCT) was successfully developed. It is switched between a focal-conic and a planar state by applying low or high frequency electric field, which was maintained even after the electric field was removed. Therefore, the proposed light shutter is extremely energy efficient and can be incorporated into the construction of smart windows for green buildings.

中文摘要 Abstract 誌謝 第一章 緒論 1.1前言 1.2液晶介紹 1.2.1液晶簡介 1.2.2液晶的形式 1.2.3液晶的基本物理特性 1.3雙頻液晶之特性 1.4膽固醇型液晶之介紹 1.4.1膽固醇型液晶的種類 1.4.2膽固醇型液晶之光學組織 1.4.3膽固醇型液晶之光電特性 1.5液晶摻混高分子之應用 1.5.1液晶摻混高分子簡介 1.5.2高分子分散向列型液晶(PDLC) 1.5.3高分子穩固膽固醇液晶(PSCT) 第二章 研究背景與目的 第三章 實驗內容 3.1實驗系統概述 3.2實驗材料與設備 3.2.1實驗材料 3.2.2實驗設備 3.3實驗步驟 3.4實驗方法 3.4.1 Reverse mode PSDFCT液晶材料配製 3.4.2 Reverse mode DDPSDFCT元件製作 3.4.3 Reverse mode DDPSDFCT液晶材料配製 3.5實驗流程及測量原理 3.6光電量測之架構與方法 3.6.1穿透度之量測方法 3.6.2液晶相之偏光顯微鏡觀察 3.6.3介電常數量測 3.6.4穩態量測 3.6.5反應時間量測 3.6.6掃描式電子顯微鏡之觀察 第四章 實驗結果與討論 4.1雙頻液晶之介電量測 4.2雙穩態DDPSDFCT光閥系統 4.2.1掌性旋光基最適添加比例 4.2.2二色性染料最適濃度 4.2.3雙穩態DDPSDFCT光閥光電性質之研究 4.3穩態測試 4.4掃描式電子顯微鏡(SEM)觀察 4.5雙穩態模式之耐久性測試 第五章 結論 5.1未來規劃 參考文獻

[1] P. J. Collings and M. Hird, Introduction to liquid crystals: chemistry and physics: CRC Press, 1997.
[2] P. J. Collings and M. Hird, 液晶化學及物理入門: 偉明圖書有限公司, 2001.
[3] 液晶之基礎與應用: 國立編譯館, 1996.
[4] F. Reinitzer, "Zur Geschichte der flussigen Kristalle," Annalen der Physik, vol. 332, pp. 213-224, 1908.
[5] J. Mauthner and W. Suida, "Beitrage zur Kenntnis des Cholesterins," Monatshefte fur Chemie und verwandte Teile anderer Wissenschaften, vol. 24, pp. 175-194, 1903/03/01 1903.
[6] T. J. Sluckin, D. A. Dunmur, H. Stegemeyer, and C. Press, Crystals that flow: Classic papers from the history of liquid crystals: Taylor & Francis London, 2004.
[7] P. J. Collings, Liquid crystals: nature's delicate phase of matter: Princeton University Press, 2002.
[8] R. Bao, C.-M. Liu, and D.-K. Yang, "Smart bistable polymer stabilized cholesteric texture light shutter," Applied Physics Express, vol. 2, p. 112401, 2009.
[9] J. Ma, L. Shi, and D.-K. Yang, "Bistable Polymer Stabilized Cholesteric Texture Light Shutter," Applied Physics Express, vol. 3, p. 021702, 2010.
[10] C. Y. Huang, R. X. Fung, Y. G. Lin, and C. T. Hsieh, "Fast switching of polymer-stabilized liquid crystal pi cells," Applied Physics Letters, vol. 90, pp. -, 2007.
[11] A. Saupe, "On Molecular Structure and Physical Properties of Thermotropic Liquid Crystals," Molecular Crystals, vol. 7, pp. 59-74, 1969/06/01 1969.
[12] J. Grum, "Book Review: Liquid Crystal Devices: Physics and Applications," International Journal of Materials and Product Technology, vol. 29, pp. 360-360, 01/01/ 2007.
[13] F. Rondelez, H. Arnould, and C. J. Gerritsma, "Electrohydrodynamic Effects in Cholesteric Liquid Crystals under ac Electric Fields," Physical Review Letters, vol. 28, pp. 735-737, 03/20/ 1972.
[14] P. S. Drzaic, "Polymer dispersed nematic liquid crystal for large area displays and light valves," Journal of Applied Physics, vol. 60, pp. 2142-2148, 1986.
[15] J. Doane, N. Vaz, B. G. Wu, and S. Žumer, "Field controlled light scattering from nematic microdroplets," Applied Physics Letters, vol. 48, pp. 269-271, 1986.
[16] N. A. Vaz, G. W. Smith, and G. P. Montgomery, "A Light Control Film Composed of Liquid Crystal Droplets Dispersed in an Epoxy Matrix," Molecular Crystals and Liquid Crystals, vol. 146, pp. 17-34, 1987/05/01 1987.
[17] N. A. Vaz and G. P. Montgomery Jr, "Refractive indices of polymer‐dispersed liquid‐crystal film materials: Epoxy‐based systems," Journal of applied physics, vol. 62, pp. 3161-3172, 1987.
[18] P. S. Drzaic, Liquid crystal dispersions vol. 1: World Scientific, 1995.
[19] D. K. Kim and B. K. Kim, "Polyurethane acrylate‐stabilized cholesteric liquid crystal dispersions," Liquid crystals, vol. 33, pp. 469-478, 2006.
[20] S. Kłosowicz and M. Aleksander, "Effect of polymer-dispersed liquid crystal morphology on its optical performance," Opto-Electronics Review, vol. 12, pp. 305-312, 2004.
[21] J. L. Fergason, "Encapsulated liquid crystal and method," ed: Google Patents, 1984.
[22] O. Yaroshchuk and L. Dolgov, "Electro-optics and structure of polymer dispersed liquid crystals doped with nanoparticles of inorganic materials," Optical Materials, vol. 29, pp. 1097-1102, 2007.
[23] T.-J. Chen, Y.-F. Chen, C.-H. Sun, and J.-J. Wu, "Electro-optical properties of reverse mode polymer dispersed liquid crystal films," Japanese journal of applied physics, vol. 43, p. L557, 2004.
[24] S. C. Jain and R. S. Thakur, "Thermo‐electro‐optic switch based on polymer dispersed liquid crystal composite," Applied physics letters, vol. 61, pp. 1641-1642, 1992.
[25] S. C. Jain, R. S. Thakur, and S. Lakshmikumar, "Switching response of a polymer dispersed liquid‐crystal composite," Journal of applied physics, vol. 73, pp. 3744-3748, 1993.
[26] C. Y. Ho, P. S. Tsai, H. G. Lin, F. C. Li, F. H. Lin, and J. Y. Lee, "Electro‐optical characteristics in phase separated liquid crystal/photo‐curable acrylic monomer mixture system," Polymers for Advanced Technologies, vol. 23, pp. 299-310, 2012.
[27] C.-Y. Ho and J.-Y. Lee, "Fabrication of pseudo-pi vertical alignment mode liquid crystal devices with ultra-violet polymerisation and investigations of their electro-optical characteristics," Liquid Crystals, vol. 37, pp. 997-1012, 2010.
[28] C.-Y. Ho, P.-S. Tsai, H.-G. Lin, F.-C. Li, F.-H. Lin, and J.-Y. Lee, "Electro-optical characteristics in phase separated liquid crystal/photo-curable acrylic monomer mixture system," Polymers for Advanced Technologies, vol. 23, pp. 299-310, 2012.
[29] K. Amundson, A. Van Blaaderen, and P. Wiltzius, "Morphology and electro-optic properties of polymer-dispersed liquid-crystal films," Physical Review E, vol. 55, p. 1646, 1997.
[30] I. Dierking, L. Kosbar, A. Lowe, and G. Held, "Polymer network structure and electro-optic performance of polymer stabilized cholesteric textures II. The effect of UV curing conditions," Liquid crystals, vol. 24, pp. 397-406, 1998.
[31] I. Dierking, L. Kosbar, A. Afzali-Ardakani, A. Lowe, and G. Held, "Two-stage switching behavior of polymer stabilized cholesteric textures," Journal of applied physics, vol. 81, pp. 3007-3014, 1997.
[32] R. Q. Ma and D. K. Yang, "Optimization of polymer‐stabilized bistable black‐white cholesteric reflective display," Journal of the Society for Information Display, vol. 7, pp. 61-65, 1999.
[33] S.-W. Kang, S. Sprunt, and L.-C. Chien, "Structure and morphology of polymer-stabilized cholesteric diffraction gratings," Applied Physics Letters, vol. 76, pp. 3516-3518, 2000.
[34] C.-Y. Huang, Y. Chih, and S. Ke, "Effect of chiral dopant and monomer concentrations on the electro-optical response of a polymer stabilized cholesteric texture cell," Applied physics B, vol. 86, pp. 123-127, 2007.
[35] S.-Y. Lu and L.-C. Chien, "A polymer-stabilized single-layer color cholesteric liquid crystal display with anisotropic reflection," Applied Physics Letters, vol. 91, p. 131119, 2007.
[36] C.-J. Tien and C.-Y. Huang, "Improvement in planar orientation of the polymer-stabilized cholesteric liquid crystal cells," Japanese Journal of Applied Physics, vol. 47, p. 8515, 2008.
[37] Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S.-T. Wu, "Electro-optics of polymer-stabilized blue phase liquid crystal displays," Applied Physics Letters, vol. 94, p. 101104, 2009.
[38] Y. Yin, W. Li, H. Cao, J. Guo, B. Li, S. He, et al., "Effects of monomer structure on the morphology of polymer network and the electro‐optical property of reverse‐mode polymer‐stabilized cholesteric texture," Journal of Applied Polymer Science, vol. 111, pp. 1353-1357, 2009.
[39] D. K. Yang, L. C. Chien, and J. Doane, "Cholesteric liquid crystal/polymer dispersion for haze‐free light shutters," Applied physics letters, vol. 60, pp. 3102-3104, 1992.
[40] D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, "Control of reflectivity and bistability in displays using cholesteric liquid crystals," Journal of applied physics, vol. 76, pp. 1331-1333, 1994.
[41] T.-C. Ko, Y.-H. Fan, M.-F. Shieh, A. Y.-G. Fuh, C.-Y. Huang, M.-S. Tsai, et al., "Diffraction from polymer-stabilized cholesteric texture films," Japanese Journal of Applied Physics, vol. 40, p. 2255, 2001.
[42] Y.-H. Lin, H.-S. Chen, H.-C. Lin, Y.-S. Tsou, H.-K. Hsu, and W.-Y. Li, "Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals," Applied Physics Letters, vol. 96, p. 113505, 2010.
[43] C.-Y. Huang, S.-W. Ke, and Y.-S. Chih, "Electro-optical performance of polymer stabilized cholesteric texture cell: The influence of chiral dopant and monomer concentration," Optics communications, vol. 266, pp. 198-202, 2006.
[44] Q. Wang, Z. Ma, H. Li, X. Li, and X. Huang, "Effects of curing temperature and UV intensity on electro-optical properties of PSCT reverse-mode light shutters," in XIII International Conference on Liquid Crystals: Chemistry, Physics, and Applications, 2000, pp. 353-358.
[45] J. H. Liu, F. R. Tsai, and T. Y. Tsai, "Preparation and characterization of polymer‐stabilized cholesteric texture cells using (+)‐bornylmethacrylate 1," Polymers for Advanced Technologies, vol. 11, pp. 228-234, 2000.
[46] H. Ren and S.-T. Wu, "Reflective reversed-mode polymer stabilized cholesteric texture light switches," Journal of applied physics, vol. 92, pp. 797-800, 2002.
[47] H.-H. Liang, C.-C. Wu, P.-H. Wang, and J.-Y. Lee, "Electro-thermal switchable bistable reverse mode polymer stabilized cholesteric texture light shutter," Optical materials, vol. 33, pp. 1195-1202, 2011.
[48] G. P. Crawford and S. Zumer, Liquid crystals in complex geometries: formed by polymer and porous networks: CRC Press, 1996.
[49] D. K. Yang, L. C. Chien, and J. W. Doane, "Cholesteric liquid crystal/polymer dispersion for haze‐free light shutters," Applied Physics Letters, vol. 60, pp. 3102-3104, 1992.
[50] M. Xu and D.-K. Yang, "Dual frequency cholesteric light shutters," Applied Physics Letters, vol. 70, pp. 720-722, 1997.
[51] G. H. Heilmeier and L. Zanoni, "guest‐host interactions in nematic liquid crystals. a new electro‐optic effect," Applied Physics Letters, vol. 13, pp. 91-92, 1968.
[52] G. H. Heilmeier, J. A. Castellano, and L. A. Zanoni, "Guest-host interactions in nematic liquid crystals," Molecular Crystals and Liquid Crystals, vol. 8, pp. 293-304, 1969.
[53] R. B. Meyer, F. Lonberg, and C.-C. Chang, "Cholesteric liquid crystal smart reflectors," Molecular Crystals and Liquid Crystals, vol. 288, pp. 47-61, 1996.

無法下載圖示 全文公開日期 2019/07/25 (校內網路)
全文公開日期 2024/07/25 (校外網路)
全文公開日期 2024/07/25 (國家圖書館:臺灣博碩士論文系統)
QR CODE