簡易檢索 / 詳目顯示

研究生: 蕭昌曜
CHANG-YAO XIAO
論文名稱: 使用歐基里德幾何建構準循環低密度奇偶檢查碼與記憶型脈衝雜訊之研究
A study of Euclidean Geometry-based Quasi-cyclic LDPC Codes over Memory Impulse Channels
指導教授: 曾德峰
Der-Feng Tseng
口試委員: 賴坤財
Kuen-Tsair Lay
張立中
Li-Chung Chang
曾德峰
Der-Feng Tseng
曾恕銘
Shu-Ming Tseng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 56
中文關鍵詞: 低密度奇偶檢查碼歐幾里德幾何準循環脈衝雜訊通道MAP估測器和積演算法
外文關鍵詞: Low-Density Parity Check Codes, Euclidean geometry, Quasi-cyclic, Impulse Channel, BCJR, Sum-Product Algorithm
相關次數: 點閱:287下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 低密度奇偶檢查碼的同位校驗矩陣的建構方法有很多種,其中一類是隨機建構的,例如:Gallager Code、Mackay Code,而還有一類就是由代數幾何所構成,例如:歐幾里德幾何(EG-LDPC Code)、投影幾何(PG-LDPC Code)。本論文是利用代數幾何—歐幾里德幾何的方法建構同位校驗矩陣的,以及其矩陣為一個準循環的形式。並分別在不同通道環境中模擬。
    在對於有線或無線通訊中,脈衝雜訊是一個重大的問題。由於脈衝雜訊不同於一般的AWGN雜訊,其雜訊能量往往是AWGN雜訊能量的數百倍,而常見的脈衝雜訊有Class A model和Bernoulli-Gaussian通道模型,而這兩種雜訊皆屬於無記憶性型,發生雜訊的時機非常隨機,無法去描述真實通道的特性,故發展出基於馬可夫鏈特性的雜訊Markov-Gaussian(MG)通道模型。而為了解決脈衝雜訊,在本論文中利用了QC EG-LDPC結合了最大後驗機率(MAP)來進行通道估測並且利用和積演算法(SPA)進行解碼來降低位元錯誤率(BER)。


    There are many ways to construct parity check matrices for low density parity check codes, one of which is randomly constructed, for example: Gallager Code, Mackay Code, another is algebraic geometry, for example: Euclidean geometry (EG-LDPC Code), projection geometry (PG-LDPC Code). This thesis constructs parity check matrices by means of algebraic geometry - Euclidean geometry, and its matrix is a quasi-cyclic form. And simulation in different channel environment.
    Impulse noise becomes one of the problems in the wired and wireless communication systems. As the impulse noise is different from the general AWGN noise, the impulse noise energy is often hundreds of times the energy of the AWGN noise. The common impulse noise such as Middleton class A and Bernoulli-Gaussian noise model. Both of them are memoryless, which mean that their occurrences are random. However, they can’t describe the characteristics of the real channel. A memory channel such as Markov-Gaussian is introduced to address the characteristics of the real channel.
    To address the impulsive noise, QC EG-LDPC is used in this paper to combine the maximum a posteriori (MAP) Estimation for channel estimation and to reduce the bit error rate (BER) by using the SPA algorithm.

    摘要 abstract 致謝 目錄 第1章 緒論 第2章 LDPC碼與脈衝雜訊通道 第3章 系統架構及通道估測 第4章 模擬結果 第5章 結論與未來研究方向 參考文獻

    [1] C. E. Shannon, "A mathematical theory of communication," The Bell System Technical Journal, vol. 27, no. 4, pp. 623-656, 1948.
    [2] S. Lin and D. J. Costello, Error Control Coding: Fundamentals and Applications. Pearson-Prentice Hall, 2004.
    [3] W. Ryan and S. Lin, Channel Codes: Classical and Modern. Cambridge University Press, 2009.
    [4] L. Yuan-hua and Z. Mei-ling, "Construction of quasi-cyclic LDPC codes based on euclidean geometries," in 2013 8th International Conference on Communications and Networking in China (CHINACOM), 2013, pp. 922-924.
    [5] T. K. Moon, Error Correction Coding: Mathematical Methods and Algorithms. Wiley, 2005.
    [6] R. Tanner, "A recursive approach to low complexity codes," IEEE Transactions on Information Theory, vol. 27, no. 5, pp. 533-547, 1981.
    [7] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, "Design of capacity-approaching irregular low-density parity-check codes," IEEE Transactions on Information Theory, vol. 47, no. 2, pp. 619-637, 2001.
    [8] Y. Kou, S. Lin, and M. P. C. Fossorier, "Low-density parity-check codes based on finite geometries: a rediscovery and new results," IEEE Transactions on Information Theory, vol. 47, no. 7, pp. 2711-2736, 2001.
    [9] L. Zhang, Q. Huang, S. Lin, K. Abdel-Ghaffar, and I. F. Blake, "Quasi-Cyclic LDPC Codes: An Algebraic Construction, Rank Analysis, and Codes on Latin Squares," IEEE Transactions on Communications, vol. 58, no. 11, pp. 3126-3139, 2010.
    [10] M. Seho, Y. Kyeongcheol, and K. Jaeyoel, "Quasi-cyclic LDPC codes for fast encoding," IEEE Transactions on Information Theory, vol. 51, no. 8, pp. 2894-2901, 2005.
    [11] Y. h. Liu and M. l. Zhang, "Improved quasi-cyclic LDPC codes based on Euclidean geometry," in 2015 International Conference on Information and Communications Technologies (ICT 2015), 2015, pp. 1-5.
    [12] P. Banelli, "Bayesian Estimation of a Gaussian Source in Middleton's Class-A Impulsive Noise," IEEE Signal Processing Letters, vol. 20, no. 10, pp. 956-959, 2013.
    [13] M. Mushkin and I. Bar-David, "Capacity and coding for the gilbert-elliott channels," IEEE Transactions on Information Theory, vol. 35, no. 6, pp. 1277-1290, 1989.
    [14] H. Lou and J. Garcia-Frias, "Low-density generator matrix codes for indoor and markov channels," IEEE Transactions on Wireless Communications, vol. 6, no. 4, pp. 1436-1445, 2007.
    [15] D. Fertonani and G. Colavolpe, "On reliable communications over channels impaired by bursty impulse noise," IEEE Transactions on Communications, vol. 57, no. 7, pp. 2024-2030, 2009.
    [16] F. H. Wijaya, "Low-Density Parity Check Decoding Over Markov Gaussian Channel," 碩士論文--國立臺灣科技大學電機工程系, 2015.
    [17] R. J. McEliece, "On the BCJR trellis for linear block codes," IEEE Transactions on Information Theory, vol. 42, no. 4, pp. 1072-1092, 1996.
    [18] J. Garcia-Frias, "Decoding of low-density parity-check codes over finite-state binary Markov channels," IEEE Transactions on Communications, vol. 52, no. 11, pp. 1840-1843, 2004.
    [19] A. J. Goldsmith and P. P. Varaiya, "Capacity, mutual information, and coding for finite-state Markov channels," IEEE Transactions on Information Theory, vol. 42, no. 3, pp. 868-886, 1996.
    [20] D. Fertonani, A. Barbieri, and G. Colavolpe, "Reduced-Complexity BCJR Algorithm for Turbo Equalization," IEEE Transactions on Communications, vol. 55, no. 12, pp. 2279-2287, 2007.

    無法下載圖示 全文公開日期 2023/02/01 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE