簡易檢索 / 詳目顯示

研究生: 陳冠廷
Guan-Ting Chen
論文名稱: 高能球磨及熱氫製程對鎂合金機械性質之影響
Effect of high energy ball milling and thermal hydrogen processing on mechanical properties of magnesium alloy
指導教授: 丘群
Chun Chiu
口試委員: 王朝正
Chaur-Jeng Wang
陳士勛
Shih-Hsun Chen
丘群
Chun Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 115
中文關鍵詞: 鎂合金熱氫製程高能球磨熱壓成型
外文關鍵詞: Magnesium Alloy, Thermal hydrogen processing, High energy ball milling, Hot pressing
相關次數: 點閱:305下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

AZ91為常見之商業鎂合金,WZ73因具有LPSO長週期堆疊相而成為新型鎂合金材料。隨著鎂合金需求量逐年成長,可預期鎂合金切屑廢料量隨之上升,若能將切屑廢料有效利用,則可解決鎂合金廢料回收問題。本研究使用鑄造AZ91及WZ73合金加工後之切屑,以熱氫製程、高能球磨、球磨及熱氫複合製程將切屑處理成粉末後,將粉末熱壓成型,探討不同製程對切屑細化效果、微觀結構、熱壓成型機械性質之影響。
研究結果顯示,AZ91切屑熱氫製程中產生燒結現象使平均粒徑從146.5 μm上升至237.6 μm,熱氫製程後相能回到原本組成;WZ73切屑平均粒徑從144.8 μm下降至129.0 μm,熱氫製程中YH2相生成且無法放氫,造成LPSO相分解且無法重組。高能球磨有效將平均粒徑及晶粒尺度下降,球磨40小時之AZ91及WZ73粉末平均粒徑分別為21.5 μm和19.8 μm,平均晶粒尺度下降至22.4 nm和22.6 nm,WZ73切屑球磨過程中釔、鋅固溶至基材內,造成LPSO相分解且無法重組。熱氫、球磨製程後AZ91相皆能重組,WZ73中LPSO相則無法重組。球磨40小時之AZ91、WZ73粉末粒徑、晶粒尺度接近,WZ73粉末因LPSO相分解,AZ91粉末Mg17Al12強化相仍存在,造成AZ91熱壓試片強高於WZ73熱壓試片。球磨40小時之AZ91及WZ73粉末因粒徑尺度小且分佈均勻,在200 ℃進行熱壓成型之試片分別具有最高硬度184.1 HV、166.1 HV。經球磨40小時與熱氫製程之AZ91粉末再經熱壓成型後因產生HDDR過程而散佈大量Mg17Al12相在材料中,抗壓強度相對於未經熱氫製程試片高,具有最高抗壓強度541.9 MPa。經球磨40小時與熱氫製程之WZ73粉末再經熱壓成型後因散佈YH2相,造成硬度較高之Mg24Y5相無法生成,抗壓強度相對於未經熱氫製程試片沒有提升,因散佈相差異,AZ91熱壓試片強度高於WZ73熱壓試片。球磨過程中粉末受到大量撞擊,造成殘留應力產生,熱氫製程中產生退火效果,熱壓試片之壓縮應變量皆上升。


AZ91 is the common magnesium alloy in industry. WZ73 become a new type of magnesium alloy material due to LPSO phase. As the demand for magnesium alloys grows year by year, the amount increase of magnesium alloys scrap will be expected. The scrap recovery problem can be solved if the scrap waste can be effectively utilized. In this study, swarf of AZ91 and WZ73 alloys were used to investigate the effects of processes, which were processed by thermal hydrogen processing, high energy ball milling, ball milling and thermal hydrogen combined processing, and the powder molded by hot pressing. The effect of the alloys swarf refining, microstructure and mechanical properties of hot pressing are discussed.
The results show the average particle size of AZ91 swarf increased from 146.5 μm to 237.6 μm due to sintering effect in thermal hydrogenation processing, and the phases can recombine after thermal hydrogen processing. The average particle size of WZ73 swarf reduced from 144.8 μm to 129.0 μm, LPSO phase in WZ73 swarf was decomposed after thermal hydrogen processing whereas the YH2 phase formed, resulting in hydrogen cannot be desorbed. After ball-milled for 40 hours, AZ91 and WZ73 average particle size reduced to 21.5 μm and 19.8 μm, average grain size reduced to 22.4 nm and 22.6 nm, both the average size of particle and grain reduced by high energy ball milling. LPSO phase in WZ73 swarf was decomposed during the process of ball milling; where bismuth and zinc are segregated into grain boundary in the substrate. The phases in AZ91 can recombine after thermal hydrogen processing and ball milling, but LPSO phase in WZ73 can’t recombine after thermal hydrogen processing and ball milling. After ball-milled for 40 hours, the particle and grain size of AZ91 and WZ73 powder were similar, but AZ91 hot-pressed specimen strength was higher than WZ73 hot-pressed specimen, because LPSO phase in WZ73 decomposed after ball milling and AZ91 second phase Mg17Al12 was still in. After ball-milled for 40 hours, AZ91 and WZ73 powder because of small particle size, the hot-pressed at 200 °C has the best hardness of about 184.1 HV and 166.1 HV. After ball-milled for 40 hours and under thermal hydrogen processing, AZ91 powder hot-pressed specimen has higher compressive strength than hot-pressed specimen of ball-milled powder and a maximum compressive strength of 541.9 MPa, due to the dispersion of a large amount of Mg17Al12 phase by HDDR process. After ball-milled for 40 hours and under thermal hydrogen process, WZ73 powder hot-pressed specimen did not have higher compressive strength than hot-pressed specimen of ball-milled powder, due to the dispersion of a large amount of YH2 phase but less Mg24Y5 phase. Because the different of dispersed phase, AZ91’s data higher than WZ73’s. Thermal hydrogen processing provides the same effect as annealing, so the compression strain of hot-pressed specimen was enhanced.

中文摘要 I ABSTRACT III 目錄 VI 圖目錄 IX 表目錄 XIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 第二章 文獻回顧 4 2.1 鎂及鎂合金簡介 4 2.1.1 鎂之特性 4 2.1.2 合金元素對鎂合金之影響 6 2.1.3 鎂合金命名 8 2.1.4 AZ91鎂合金 10 2.1.5 WZ73鎂合金 11 2.1.6 長週期堆疊 (LPSO) 11 2.1.7 鎂合金廢料回收 12 2.2 材料強化機制 13 2.2.1 晶粒細化 13 2.2.2 析出硬化 15 2.3 球磨法 16 2.3.1 高能球磨工作原理 18 2.3.2 球磨參數影響 19 2.4 熱氫製程 20 2.5 熱壓成型 24 第三章 實驗方法 25 3.1 實驗流程 25 3.2 實驗材料製備 26 3.3 高能球磨製程 26 3.4 熱氫製程 29 3.5 粉末成型 31 3.6 分析儀器 34 3.6.1 粒徑分析儀 34 3.6.2 X 光繞射儀 34 3.6.3 場效發射式掃描電子顯微鏡 36 3.6.4 維克氏硬度試驗機 37 3.6.5 落地型動態材料試驗機 38 第四章 結果與討論 39 4.1 原材分析 39 4.1.1 AZ91 39 4.1.2 WZ73 41 4.2 熱氫製程 43 4.2.1 吸放氫曲線 43 4.2.2 相分析 48 4.2.3 粒徑分析 51 4.2.4 顯微結構分析 53 4.3 高能球磨製程 56 4.3.1 相分析 56 4.3.2 粒徑分析 59 4.3.3 顯微結構分析 61 4.4 高能球磨及熱氫複合製程 65 4.4.1 吸放氫曲線 65 4.4.2 相分析 74 4.4.3 粒徑分析 76 4.4.4 顯微結構分析 78 4.5 熱壓成型 79 4.5.1 硬度及孔隙率分析 80 4.5.2 相分析 82 4.5.3 顯微結構分析 84 4.5.4 壓縮測試分析 89 第五章 結論 92 參考文獻 94

[1] X. Zhang, Y. Chen, and J. Hu, "Recent advances in the development of aerospace materials," Progress in Aerospace Sciences, vol. 97, pp. 22-34, 2018.
[2] Y. Liu, J. Fan, H. Zhang, Q. Zhang, J. Gao, H. Dong, and B. Xu, "Formation and mechanism of nanocrystalline AZ91 powders during HDDR processing," Materials Characterization, vol. 125, pp. 134-141, 2017.
[3] Z. Xie, J. Fan, H Dong, F. Zhou, and B. Xu, "Microstructure evolution and nano-crystalline production of Mg-9Al-Zn alloy during HDDR processing," Journal of Alloys and Compounds, vol. 699, pp. 841-848, 2017.
[4] H. Takamura, T. Miyashita, A. Kamegawa, and M. Okada, "Grain size refinement in Mg-Al-based alloy by hydrogen treatment," Journal of Alloys and Compounds, vol. 356-357, pp. 804-808, 2003.
[5] W. Fang, W. Fang, and H. Sun, "Preparation of bulk ultrafine-grained Mg-3Al-Zn alloys by consolidation of ball milling nanocrystalline powders," Transactions of Nonferrous Metals Society of China, vol. 21, pp. s247-s251, 2011.
[6] H. Sun, W. Fang, and W. Fang, "Producing nanocrystalline bulk Mg-3Al-Zn alloy by powder metallurgy assisted hydriding-dehydriding," Journal of Alloys and Compounds, vol. 509, no. 32, pp. 8171-8175, 2011.
[7] X. Wang, L. Hu, K. Liu, and Y. Zhang, "Grain growth kinetics of bulk AZ31 magnesium alloy by hot pressing," Journal of Alloys and Compounds, vol. 527, pp. 193-196, 2012.
[8] C. Suryanarayana, "Mechanical alloying and milling," Progress in Materials Science, vol. 46, no. 1, pp. 1-184, 2001.
[9] D. L. Zhang, "Processing of advanced materials using high-energy mechanical milling," Progress in Materials Science, vol. 49, no. 3, pp. 537-560, 2004.
[10] N. Eliaz, D. Eliezer, and D. L. Olson, "Hydrogen-assisted processing of materials," Materials Science and Engineering: A, vol. 289, no. 1, pp. 41-53, 2000.
[11] A. Andreasen, "Hydrogenation properties of Mg-Al alloys," International Journal of Hydrogen Energy, vol. 33, no. 24, pp. 7489-7497, 2008.
[12] Q. A. Zhang and H. Y. Wu, "Hydriding behavior of Mg17Al12 compound," Materials Chemistry and Physics, vol. 94, no. 1, pp. 69-72, 2005.
[13] 黃泓閔,"鎂-鋅-釔合金粉末經等通道轉角擠製成形後之微觀結構及性質之探討",國立臺灣科技大學機械所碩士論文,民國106年。
[14] K. Ishikawa, T. Kawasaki, and Y. Yamada, "Hydrogenation behavior of Mg85Zn6Y9 crystalline alloy with long period stacking ordered structure," International Journal of Hydrogen Energy, vol. 40, no. 38, pp. 13014-13021, 2015.
[15] 洪鼎倫,"2016 非鐵新興市場特輯-鎂金屬篇",財團法人金屬工業研究發展中心,民國105年。
[16] 蔡幸甫,"鎂合金在台灣之現況及其發展機會",工研院工業材料研究所,民國89年。
[17] M. P. Staiger, A. M. Pietak, J. Huadmai, and G. Dias, "Magnesium and its alloys as orthopedic biomaterials: A review," Biomaterials, vol. 27, no. 9, pp. 1728-1734, 2006.
[18] J. Yan, Y. Sun, F. Xue, S. Xue, and W. Tao, "Microstructure and mechanical properties in cast magnesium-neodymium binary alloys," Materials Science and Engineering: A, vol. 476, no. 1, pp. 366-371, 2008.
[19] A. Kielbus and T. Rzychon, "Mechanical and creep properties of Mg-4Y-3RE and Mg-3Nd-1Gd magnesium alloy," Procedia Engineering, vol. 10, pp. 1835-1840, 2011.
[20] 鄭達謙,"不同軋延製程控制顯微組織對ZK60鎂合金高溫機械性質影響之研究",國立東華大學材料所碩士論文,民國99年。
[21] (27/03/2018). Magnesium Elektron-Nomenclature. Available: https://www.magnesium-elektron.com/about-us/about-magnesium/nomenclature/
[22] Y. Kawamura, K. Hayashi, A. Inoue, and T. Masumoto, "Rapidly Solidified Powder Metallurgy Mg97Zn1Y2 Alloys with Excellent Tensile Yield Strength above 600 MPa," Materials Transactions, vol. 42, no. 7, pp. 1172-1176, 2001.
[23] D. Xu, E. Han, and Y. Xu, "Effect of long-period stacking ordered phase on microstructure, mechanical property and corrosion resistance of Mg alloys: A review," Progress in Natural Science: Materials International, vol. 26, no. 2, pp. 117-128, 2016.
[24] B. Wan, W. Chen, T. Lu, F. Liu, Z. Jiang, and M. Mao, "Review of solid state recycling of aluminum chips, " Resources, Conservation & Recycling, vol. 125, pp. 37-47, 2017.
[25] M. Hu, Z. Ji, X. Chen, Q. Wang, and W. Ding, "Solid-state recycling of AZ91D magnesium alloy chips," Transactions of Nonferrous Metals Society of China, vol. 22, pp. s68-s73, 2012.
[26] S. You, Y. Huang, K. U. Kainer, and N. Hort, "Recent research and developments on wrought magnesium alloys," Journal of Magnesium and Alloys, vol. 5, no. 3, pp. 239-253, 2017.
[27] H. Yu, Y. Xin, M. Wang, and Q. Liu, "Hall-Petch relationship in Mg alloys: A review," Journal of Materials Science & Technology, vol. 34, no. 2, pp. 248-256, 2018.
[28] Y. N. Wang, C. I. Chang, C. J. Lee, H. K. Lin, and J. C. Huang, "Texture and weak grain size dependence in friction stir processed Mg-Al-Zn alloy," Scripta Materialia, vol. 55, no. 7, pp. 637-640, 2006.
[29] R. E. Smallman and A. H. W. Ngan, "Chapter 13 - Precipitation Hardening," in Modern Physical Metallurgy (Eighth Edition), pp. 499-527, 2014.
[30] 王世敏、許祖勛、傅晶,"奈米材料原理與製備",五南圖書出版股份有限公司,民國93年。
[31] J. Feng, H. Sun, X. Li, J. Zhang, W. Fang, and W. Fang, "Microstructures and mechanical properties of the ultrafine-grained Mg-3Al-Zn alloys fabricated by powder metallurgy," Advanced Powder Technology, vol. 27, no. 2, pp. 550-556, 2016.
[32] M. A. Taleghani and J. M. Torralba, "The microstructural evolution of a pre-alloyed AZ91 magnesium alloy powder through high-energy milling and subsequent isothermal annealing," Materials Letters, vol. 98, pp. 182-185, 2013.
[33] F. Wa, F. Wen-bin, and S. Hong-fei, "Bulk Mg–3Al–Zn alloy with ultrafine grain size produced by powder metallurgy," Journal of Alloys and Compounds, vol. 509, no. 14, pp. 4887-4890, 2011.
[34] C. C. Koch and J. D. Whittenberger, "Mechanical milling/alloying of intermetallics," Intermetallics, vol. 4, no. 5, pp. 339-355, 1996.
[35] 蘇順發,"儲氫材料",科學發展,民國102年。
[36] M. Martin, C. Gommel, C. Borkhart, and E. Fromm, "Absorption and desorption kinetics of hydrogen storage alloys," Journal of Alloys and Compounds, vol. 238, no. 1, pp. 193-201, 1996.
[37] R. M. German, "Chapter Three - Infrastructure Developments," in Sintering: from Empirical Observations to Scientific Principles, pp. 41-69, 2014.
[38] 張智堯,"真空熱壓燒結製程對鈷鉻合金其顯微組織與材料特性之研究",國立臺北科技大學材料所碩士論文,民國106年。
[39] Y. F. Zhao, J. J. Si, J. G. Song, and X. D. Hui, "High strength Mg-Zn-Ca alloys prepared by atomization and hot pressing process," Materials Letters, vol. 118, pp. 55-58, 2014.
[40] 鄭信民、林麗娟,"X光繞射應用簡介",工業材料雜誌 181期, 民國91年。
[41] M. Sahlberg and Y. Andersson, "Hydrogen absorption in Mg-Y-Zn ternary compounds," Journal of Alloys and Compounds, vol. 446-447, pp. 134-137, 2007.

QR CODE