簡易檢索 / 詳目顯示

研究生: 林志彥
Chih-yen Lin
論文名稱: 綠設計水工混凝土工程性質之研究
Study on Engineering Properties of Hydraulic Concrete with Green Design
指導教授: 張大鵬
Ta-Peng Chang
口試委員: 陳君弢
Chun-tao Chen
葉為忠
Wei-Chung Yeih
孫詠明
Yung-Ming Sun
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 209
中文關鍵詞: 水工混凝土綠混凝土水中磨耗田口試驗法
外文關鍵詞: Hydraulic concrete, green concrete, hydraulic abrasion resistance, Taguchi experimental method
相關次數: 點閱:245下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討綠設計水工混凝土之工程性質與磨耗性能,試驗變數包括水膠比 (W/B = 0.3、0.4、0.5)、砂率 (S/A = 40%、50%、60%)、矽灰含量 (SF = 0%、5%、10%)及聚丙烯纖維量 (PP = 0%、0.1%、0.2%)等項,試驗配比採用田口法規劃,並輔用變異數分析及雜訊比等統計方法,了解各因子對於混凝土性質影響程度;隨後另以固定水膠比,改變砂率、矽灰及纖維含量方式,探討其三項因子對混凝土工程及磨耗性質之關聯性。
    研究結果顯示:(1) 由田口試驗法中,水膠比與聚丙烯纖維量對新拌性質有顯著影響;對於超音波波速、動態彈性及剪力模數、抗壓強度及劈裂強度等性質,水膠比為最大影響因子,其貢獻度也最大;於56天齡期,矽灰含量為表面電阻及氯離子滲透試驗主要影響因子,其次為水膠比;不論乾濕環境,水膠比對磨耗性質之影響最為顯著,而影響最低因子為矽灰含量;濕混凝土試體在超音波波速與動態彈性及剪力模數其數值皆大於乾混凝土試體;但抗壓強度及劈裂強度則降低。(2) 依據本研究綠設計試驗配比進行評核,結果顯示混凝土各配比之選料及用量皆能通過緣設計配比指標要求之60~77%;綠混凝土性能評核中,大部分混凝土配比所製作混凝土皆能通過綠混凝土性能新拌性質及耐久性指標要求之49~83%。(3) 全因子試驗中,當混凝土砂率由40%增加至60%,不論是否添加纖維,坍流度皆呈下降趨勢,混凝土添加矽灰及纖維數量增加時,皆造成坍流度呈下降趨勢;混凝土超音波波速、動態彈性及剪力模數和抗壓強度皆隨砂率提升而下降,隨矽灰及纖維添加量增加而提升;混凝土表面電阻隨砂率提升而下降約0.44~14.79%。添加矽灰則增加5.98~73.68%。添加纖維量也增加表面電阻約0.26~19.32%;乾濕混凝土磨耗性質皆隨增加砂率、添加矽灰量及纖維量而提升, (4)當混凝土超音波波速超過約4600 m/s 、動態彈性模數超過約36 GPa、剪力模數超過約13.5 GPa、抗壓強度超過約45 MPa及抗彎強度超過6.2 GPa時,混凝土磨耗損失率約維持在3.2~3.5%。


    This research mainly focuses on the investigation of engineering properties and abrasion resistance capability for the hydraulic concrete with green design. Experimental variables include the water-to-binder ratios (W/B = 0.3、0.4、0.5), the percentage of sand (S/A = 40%、50%、60%), amount of silica fume (SF = 0%、5%、10%), and amount of polypropylene fiber (PP = 0%、0.1%、0.2%). The Taguchi method for mix proportion together with the statistical methods of ANOVA and signal-to-noise (S/N) ratio were used to understand the influence of each factor on the response. Afterward, at a fixed water-cement ratio, variations of the percentage of sand, amounts of silica fume and fiber were used as the factors to study the correlation among the engineering properties and abrasion resistance capability.
    The results of study shows that:(1) From the Taguchi experimental method, the water-cement ratio and polypropylene fibers significantly affect the fresh property; for the properties of ultrasonic pulse velocity, dynamic of elastic modulus, dynamic of shear modulus, compressive strength and splitting tension strength, the water-binder ratio is the maximum impact factor and has the greatest contribution; at the age of 56 days, the silica fume content is the main factor in the surface resistivity and chloride penetration test, followed by water-binder ratio; wet concrete specimens have higher values of ultrasonic pulse velocity, dynamic modulus of elasticity and dynamic shear modulus but lower values of compressive and splitting tensile strengths than those for dry concrete specimens; (2) From the evaluation on the criteria of material selection and amount of usage of mixture proportion with green design, it is found that all the mixtures in this study can reach the index requirement by 60~77%, and from the performance evaluation, most of the mixtures in this study can reach the index requirement by 49~83%. (3) The results from the full factorial experiment show that when the percentage of sand increases from 40 % to 60 %, regardless if the fiber is added or not, the slump flow tends to reduce and similar tendency of reduction in slump flow was observed when the silica fume and fiber were added to the mixture; the ultrasonic pulse velocity, dynamic of elastic modulus, dynamic of shear modulus, and compressive strength of concrete specimen are decreased with the increase of the percentage of sand, and increased with the increase of silica fume and fiber contents; the sand surface resistivity of concrete decreases with the increase of the percentage of sand by 0.44 ~ 14.79 %, increases with the increased silica fume content by5.98 ~ 73.68%, and increases by 0.26~19.32% with the increase of added fiber content; the abrasion resistance capability of wet and dry concrete specimens increases with the increase of percentage of sand, added silica fume and fiber contents. (4) When the ultrasonic pulse velocity higher than about 4600 m/s, dynamic modulus of elasticity higher than about 36 GPa, shear modulus higher than about 13.5 GPa, compressive strength higher than about 45 MPa and modulus of rupture higher than 6.2 MPa, the abrasion percentage of concrete specimens keeps at the values between 3.1 ~ 3.5%.concrete Concrete abrasion loss rate is decreases when the ultrasonic pulse velocity, dynamic of elastic modulus, dynamic of shear modulus, compressive strength and bending strength increases.

    中文摘要 II 英文摘要 III 致謝 V 總目錄 VII 表目錄 XI 圖目錄 XIV 第一章 緒論 1 1-1 研究動機 1 1-2 研究目的 2 1-3 研究範圍與流程 3 第二章 文獻回顧 5 2-1 綠混凝土 5 2-1-1 美國 5 2-1-2 加拿大 6 2-1-3 日本 7 2-1-4 國內 7 2-2 水工混凝土特性 9 2-2-1 水工混凝土破壞行為 9 2-2-2 水工構造物磨蝕作用機制 11 2-3 水工混凝土耐磨性能影響因子 12 2-3-1 混凝土組成與水化機理 13 2-3-2 水膠比 14 2-3-3 粒料性質 15 2-3-4 礦物摻料 15 2-3-5 纖維 17 2-3-6 強塑劑 18 2-4 混凝土磨耗試驗方法 19 2-4-1 ASTM C1138 水中磨耗試驗法 19 2-4-2 含砂流水沖擊試驗 20 2-4-3 含石水流沖擊試驗 20 2-5 田口試驗設計法 21 2-5-1 田口試驗法設計流程 22 2-5-2 田口法分析方法 24 第三章 綠混凝土設計指標與配比設計 39 3-1 綠混凝土設計指標 39 3-2 試驗配比設計 42 第四章 試驗計畫 48 4-1 試驗內容 48 4-2 試驗變數及項目 48 4-2-1 試驗變數 48 4-2-2 試體編號說明 50 4-2-3 試驗項目 50 4-3 試驗材料 51 4-4 試驗設備與儀器 53 4-4-1 混凝土新拌性質試驗 53 4-4-2 混凝土工程性質試驗 54 4-4-3 混凝土耐久性質試驗 55 4-4-4 混凝土磨耗性質試驗 56 4-5 拌和程序 56 4-6 試驗方法 57 第五章 試驗結果與討論 76 5-1 田口試驗法 76 5-1-1 新拌性質 76 5-1-2 工程性質 77 5-1-3 耐久性質 88 5-1-4 磨耗性質 91 5-2 綠混凝土評核 93 5-2-1 綠混凝土配比評核 93 5-2-2 綠混凝土性能評核 94 5-3 全因子試驗 95 5-3-1 坍流度試驗 96 5-3-2 超音波波速 97 5-3-3 動態彈性及剪力模數 99 5-3-4 抗壓強度 101 5-3-5 表面電阻 103 5-3-6 磨耗試驗 105 5-4 混凝土磨耗與工程性質之關聯分析 107 第六章 結論與建議 172 6-1 結論 172 6-1-1 田口試驗法 172 6-1-2 綠混凝土評核 173 6-1-3 全因子試驗 173 6-1-4 混凝土磨耗與工程性質之關聯分析 174 6-2 建議 175 參考文獻 177 附錄 A田口法各試驗項目之S/N因子反應圖 183 附錄 B綠混凝土評核表 198

    1.Portland Cement Association (PCA), “Building Green with Concrete, ” http://www.cement.org/buildings/green_leed.asp
    2.National Ready Mixed Concrete Association, “Concrete: Meeting today’s needs without compromising the future,” http://www.greenconcrete.info
    3.Cement Association of Canada, “Concrete: The Sustainable Construction Material,” http://www.cement.ca/en/Concrete-Applications.html
    4.コンクリートの環境負荷評価研究小委員会:コンクリートの環境負荷評価,コンクリート技術シリーズ,No.44,(社)土木学会,2002
    5.環境対応型コンクリートの環境影響手法の構築研究委員会報告書,日本コンクリート工学協会,2007
    6.鉄筋コンクリート造建築物の環境配慮施工指針(案)・同解説,日本建築学会,2008
    7.內政部建築研究所,綠建材解說與評估手冊,2007。
    8.內政部建築研究所,綠混凝土性質與指標之研究,2009。
    9.ACI 210R-93, Erosion of Concrete in Hydraulic Structures.
    10.黃兆龍,混凝土性質與行為,詹氏書局,2003。
    11.徐造華,「高強度水工混凝土摻加飛灰之耐磨性及裂紋防制」,國立中興大學,博士論文,2006。
    12.詹穎雯,添加爐石及纖維之矽灰混凝土水中磨耗性質與自體收縮,財團法人中興工程顧問社,2000年。
    13.David Plum, Fang Xufei, A rock and a hard place, Water Power & Dam Construction, pp.30-33, 1996.
    14.劉玉雯,劉楨業,謝嘉聰,「水工混凝土構造物耐衝擊/耐磨新材料與修補工法」,近代水利設施混凝土工程之應用與展望研討會,2011。
    15.黃兆龍,卜作嵐混凝土使用手冊,科技圖書股份有限公司,2007。
    16.Mindess, S., J. F. Young , and D. Darwin, “Concrete,” Second Edition, Prentice Hall, 2003, pp. 23
    17.Liu, T. C., “Abrasion Resistance of Concrete, ” ACI Journal, 78(5), pp. 341–350, 1981.
    18.Yen, T., T. H. Hsu, Y. W. Liu and S. H. Chen, “Influence of Class F Fly Ash on theAbrasion–Erosion Resistance of High-Strength Concrete,” Construction and Building Materials vol. 21, pp. 458–463, 2007.
    19.Liu, Y. W. , T. Yen , and T. H. Hsu, ”Abrasion Erosion of Concrete by Waterborne Sand,“ Cement and Concrete Research vol. 36, pp. 1814-1820, 2006.
    20.李修齊,「高強度混凝土水中磨耗性質之機理探討」,國立臺灣大學,碩士論文,1997。
    21.Poon, C. S., L. Lam, and Y. L. Wong, “A study on high strength concrete prepared with large volumes of low calcium fly ash,” Cement and Concrete Research, Vol. 30, pp. 447-455, 2000.
    22.Li, G. and X. Zhao, “Properties of Concrete Incorporating Fly Ash and Ground Granulated Blast-Furnace Slag,” Cement Concrete Composites, Vol. 25, pp. 293-299, 2002.
    23.Zhang, Y., W. Sun, and S. Liu,, “Study on the hydration heat of binder paste in high-performance concrete” ,Cement and Concrete Research, Vol. 32, pp. 1483−1488, 2002.
    24.Hwang, C. L., and D. H. Shen, “The Effect of Blast Furnace Slag and Fly Ash on the Hydration of Portland Cement,” Cement and Concrete Research, Vo. 21, No. 4, PP. 410 ~425, 1991.
    25.Kadri, E.and R. Duval, “Hydration heat kinetics of concrete with silica fume,” Construction and Building Materials, Volume 23, Issue 11, pp. 3388-3392, 2009.
    26.湯兆緯,顏聰,林聰邦,「混凝土厚度及飛灰取代水泥量對巨積混凝土水化熱溫升之影響」,中國土木水利工程學刊,第18卷,第1期,2006
    27.林建宏,「爐石混凝土水中磨耗性質研究」,國立臺灣大學,碩士論文,2004。
    28.吳崇豪,「爐石混凝土之抗衝擊磨耗性質研究」,國立中興大學,碩士論文,2004。
    29.Liu, Y. W., “Improving the Abrasion Resistance of hydraulic-Concrete containing Surface Crack by Adding Silica Fume,” Construction and Building Materials, Vol. 21, pp. 972-977, 2007.
    30.宋佩瑄,纖維混凝土實務,現代營建雜誌社,1991。
    31.蕭中誠,「卜作嵐材料及纖維對混凝土之磨耗性之影響」,國立中興大學,碩士論文,2008。
    32.Horszczaruk, E. K., “Hydro-abrasive erosion of high performance fiber-reinforced concrete,” Wear, Volume 267, Issues 1-4, pp. 110-115, 2009.
    33.張天銘,「添加卜作嵐材料與聚丙烯纖維對水工混凝土磨耗之影響」,國立臺灣海洋大學,碩士論文,2010。
    34.陳建奎,混凝土外加劑原理與應用,中國計劃出版社,2004。
    35.Mehta, P. K. and P. J. M. Monteiro, “Concrete Structures, Properties, and Materials,” Prentice Hall, pp.286, 2006.
    36.廖東昇,「飛灰與強塑劑對高性能混凝土工程性質影響之研究」,國立台灣科技大學博士論文,2006。
    37.Manaseer, A. A., M. D. Haug, and K. W. Nasser, “Compressive Strength of Concrete Containing Fly Ash, Brine, and Admixtures,” Materials Journal, ACI Journal, pp. 109-118, 1988
    38.郭義浩,「強塑劑對混凝土質流行為之影響」,國立中興大學碩士論文,2002。
    39.Annual Book of ASTM C418-05, “Standard Test Method for Abrasion Resistance of Concrete by Sand blasting”.
    40.Annual Book of ASTM C779/C779M-05, “Standard Test Method for Abrasion Resistance of Horizontal Concrete Surfaces”.
    41.Annual Book of ASTM C944/C944M-99, “Standard Test Method for Abrasion Resistance of Concreteor Mortar Surfaces by the Rotating-Cutter Method”.
    42.Annual Book of ASTM C1138-97, “Standard Test Method for Abrasion Resistance of Concrete (Underwater Method)”.
    43.邱欽賢,「水工混凝土之抗沖蝕性」,國立中興大學碩士論文,2002。
    44.蕭旭志,「界面過渡區對混凝土抗含砂水流沖擊性之影響,國立中興大學碩士論文,2005。
    45.李輝煌,田口方法—品質設計的原理與實務,高立圖書,2010。
    46.Taguchi, G. and Yokoyama, T., “Taguchi methods : design of experiments,” ASI Press, Japan , 1993.
    47.蕭添進,「田口法及灰關聯分析再生粒料混凝土性質優選配比之研究」,國立台灣科技大學博士論文,2011。
    48.田耀遠,「田口法應用於混凝土配比設計及交互作用之研究」,國立台灣科技大學博士論文,2004。
    49.張哲維,「環氧樹脂工程性質與修補成效之研究」,國立台灣科技大學博士論文,2009。
    50.陳冠宇,「鹼激發爐石基膠體配比因子對其工程性質影響之研究」,國立台灣科技大學碩士論文,2010。
    51.辛昱霖,「以田口方法研究煤炭及焦炭-瀝青燒結之最佳條件」,大同大學碩士論文,2010。
    52.林瑋倫,「鹼激發爐石基膠體工程性質之研究」,國立台灣科技大學碩士論文,2009。
    53.楊宗叡,「再生粒料等級對混凝土工程性質之影響」,國立台灣科技大學碩士論文,2008。

    無法下載圖示 全文公開日期 2014/07/29 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE