簡易檢索 / 詳目顯示

研究生: 曾瑜琪
Yu-Chi TSENG
論文名稱: 使用基於三唑分子的材料作為添加劑以增強二維Ruddlesden-Popper鈣鈦礦太陽能電池的整體性能
Using Triazole-based Molecules as an Additive to Enhance the Overall Performance of 2D Ruddlesden-Popper perovskite solar cell
指導教授: 戴龑
Yian Tai
口試委員: 陶雨臺
Yu-Tai Tao
何郡軒
Jinn-Hsuan Ho
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 80
中文關鍵詞: 二維鈣鈦礦太陽能電池含胺基的添加劑促進橫向傳輸
外文關鍵詞: Two-dimensional perovskite solar cells, Amine-containing additives, Facilitation of lateral transport
相關次數: 點閱:253下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主要的研究目標是增強二維鈣鈦礦材料的橫向電荷傳輸能力,以提升其光伏性能。為了達成這一目標,我們通過添加能夠導電的分子來改善鈣鈦礦的光伏特性。在篩選了幾個分子後,我們針對顯示出最好性能的Benzotriazole (BTZ)進行研究,並探討其對鈣鈦礦性能的影響。我們的研究結果顯示,添加BTZ分子能有效提升鈣鈦礦材料的吸光度。進一步的量子效率測試證實了BTZ的添加不僅增強了吸光度,同時也顯著提升了材料的電性能。X射線繞射分析確認了BTZ的存在能有效提升材料的結晶度。通過四點探針和霍爾量測儀的驗證,我們觀察到BTZ的添加有助於促進載流子在鈣鈦礦中的橫向遷移,進而改善載子的傳輸特性。這兩點結果表明,添加BTZ在二維鈣鈦礦中有效提升了結晶度,同時也顯著改善了光伏材料的電荷傳輸性能。接著當我們進行二次離子質譜儀的縱向分析時,我們發現在適量的BTZ添加下,薄膜表面積累了一些BTZ分子。這些分子似乎對鈣鈦礦薄膜的性能產生了正面的影響。當含有少量的BTZ於薄膜表面時,有助於鈣鈦礦層與PC61BM之間建立更緊密的接觸,進而有效地降低電阻。綜上所述,本研究的結果顯示,添加BTZ分子能顯著增強二維鈣鈦礦薄膜的光伏性能。因此,未來的研究可進一步探索其他分子的應用,並深入瞭解苯環的反應機制,從而推動太陽能技術的發展。


The main objective of this thesis is to enhance the lateral charge transport capability of two-dimensional perovskite materials to improve their photovoltaic performance. To achieve this goal, we introduced conductive molecules to enhance the photovoltaic properties of perovskite. After screening several molecules, we focused on investigating the impact of Benzotriazole (BTZ), which exhibited the best performance, on perovskite properties. Our research results demonstrated that the addition of BTZ molecules effectively increased the light absorption of perovskite materials. Further quantum efficiency measurements confirmed that BTZ not only enhanced light absorption but also significantly improved the electrical properties of the material.
Through confirmation with four-point probe and Hall measurement equipment, we observed that the addition of BTZ facilitated the lateral migration of charge carriers in the perovskite, thereby improving charge transport properties. Moreover, during SIMS analysis, we discovered that an appropriate amount of BTZ accumulation on the surface of the thin film positively affected the perovskite film's performance.
In conclusion, our research results demonstrate that the addition of BTZ molecules significantly enhances the photovoltaic performance of two-dimensional perovskite thin films. Therefore, future research can further explore the application of other molecules and investigate the reaction mechanism of the benzene ring to advance solar technology.

致謝 I 中文摘要 II Abstract III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1前言 1 1.2研究動機與目的 1 第二章 文獻回顧與相關理論 3 2.1太陽能電池的研究背景 3 2.2二維鈣鈦礦的結構類型 9 2.3鈣鈦礦的結構缺陷 12 2.4二維鈣鈦礦的生長機制 15 2.5二維鈣鈦礦太陽能電池製程簡介 20 2.6太陽光光譜分析 22 2.7鈣鈦礦太陽能電池工作原理與轉換效率 24 第三章 實驗方法與步驟 30 3.1實驗耗材與設備 30 3.2實驗步驟 32 3.3儀器分析 34 第四章 實驗結果與討論 39 4.1 添加不同的分子在二維鈣鈦礦中 39 4.2 使用不同濃度的BTZ對二維鈣鈦礦的影響 45 4.3 以BTZ延伸的類似分子之研究 56 第五章 結論與未來展望 67 第六章 參考文獻 68

[1] S. S. Dipta and A. Uddin, "Stability issues of perovskite solar cells: A critical review," Energy Technology, vol. 9, no. 11, p. 2100560, 2021.
[2] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells," Journal of the american chemical society, vol. 131, no. 17, pp. 6050-6051, 2009.
[3] J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park, "6.5% efficient perovskite quantum-dot-sensitized solar cell," Nanoscale, vol. 3, no. 10, pp. 4088-4093, 2011.
[4] H.-S. Kim et al., "Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%," Scientific reports, vol. 2, no. 1, p. 591, 2012.
[5] J. Burschka et al., "Sequential deposition as a route to high-performance perovskite-sensitized solar cells," Nature, vol. 499, no. 7458, pp. 316-319, 2013.
[6] M. Liu, M. B. Johnston, and H. J. Snaith, "Efficient planar heterojunction perovskite solar cells by vapour deposition," Nature, vol. 501, no. 7467, pp. 395-398, 2013.
[7] NREL. "Best Research-Cell Efficiency Chart." https://www.nrel.gov/pv/cell-efficiency.html (accessed.
[8] E. Shi, Y. Gao, B. P. Finkenauer, A. H. Coffey, and L. Dou, "Two-dimensional halide perovskite nanomaterials and heterostructures," Chemical Society Reviews, vol. 47, no. 16, pp. 6046-6072, 2018.
[9] X. Li, J. M. Hoffman, and M. G. Kanatzidis, "The 2D halide perovskite rulebook: how the spacer influences everything from the structure to optoelectronic device efficiency," Chemical reviews, vol. 121, no. 4, pp. 2230-2291, 2021.
[10] S. Peng, J. Ma, P. Li, S. Zang, Y. Zhang, and Y. Song, "Regulation of quantum wells width distribution in 2D perovskite films for photovoltaic application," Advanced Functional Materials, vol. 32, no. 43, p. 2205289, 2022.
[11] L. Mao, C. C. Stoumpos, and M. G. Kanatzidis, "Two-dimensional hybrid halide perovskites: principles and promises," Journal of the American Chemical Society, vol. 141, no. 3, pp. 1171-1190, 2018.
[12] G. Wu, R. Liang, Z. Zhang, M. Ge, G. Xing, and G. Sun, "2D hybrid halide perovskites: structure, properties, and applications in solar cells," Small, vol. 17, no. 43, p. 2103514, 2021.
[13] C. Ma, D. Shen, T. W. Ng, M. F. Lo, and C. S. Lee, "2D perovskites with short interlayer distance for high‐performance solar cell application," Advanced Materials, vol. 30, no. 22, p. 1800710, 2018.
[14] M. Safdari, P. H. Svensson, M. T. Hoang, I. Oh, L. Kloo, and J. M. Gardner, "Layered 2D alkyldiammonium lead iodide perovskites: synthesis, characterization, and use in solar cells," Journal of Materials Chemistry A, vol. 4, no. 40, pp. 15638-15646, 2016.
[15] J. Gong, M. Hao, Y. Zhang, M. Liu, and Y. Zhou, "Layered 2D Halide Perovskites beyond the Ruddlesden–Popper Phase: Tailored Interlayer Chemistries for High‐Performance Solar Cells," Angewandte Chemie, vol. 134, no. 10, p. e202112022, 2022.
[16] L. Mao et al., "Hybrid Dion–Jacobson 2D lead iodide perovskites," Journal of the American Chemical Society, vol. 140, no. 10, pp. 3775-3783, 2018.
[17] Y. Lei, Y. Xu, M. Wang, G. Zhu, and Z. Jin, "Origin, influence, and countermeasures of defects in perovskite solar cells," Small, vol. 17, no. 26, p. 2005495, 2021.
[18] W.-J. Yin, T. Shi, and Y. Yan, "Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber," Applied Physics Letters, vol. 104, no. 6, 2014.
[19] J. Kim, S.-H. Lee, J. H. Lee, and K.-H. Hong, "The role of intrinsic defects in methylammonium lead iodide perovskite," The journal of physical chemistry letters, vol. 5, no. 8, pp. 1312-1317, 2014.
[20] H. Shi and M.-H. Du, "Shallow halogen vacancies in halide optoelectronic materials," Physical Review B, vol. 90, no. 17, p. 174103, 2014.
[21] M. L. Agiorgousis, Y.-Y. Sun, H. Zeng, and S. Zhang, "Strong covalency-induced recombination centers in perovskite solar cell material CH3NH3PbI3," Journal of the American Chemical Society, vol. 136, no. 41, pp. 14570-14575, 2014.
[22] W. Li, Y.-Y. Sun, L. Li, Z. Zhou, J. Tang, and O. V. Prezhdo, "Control of charge recombination in perovskites by oxidation state of halide vacancy," Journal of the American Chemical Society, vol. 140, no. 46, pp. 15753-15763, 2018.
[23] J. Wang, W. Li, and W. J. Yin, "Passivating detrimental DX centers in CH3NH3PbI3 for reducing nonradiative recombination and elongating carrier lifetime," Advanced Materials, vol. 32, no. 6, p. 1906115, 2020.
[24] M. H. Du, "Efficient carrier transport in halide perovskites: theoretical perspectives," Journal of Materials Chemistry A, vol. 2, no. 24, pp. 9091-9098, 2014.
[25] M.-H. Du, "Density functional calculations of native defects in CH3NH3PbI3: effects of spin–orbit coupling and self-interaction error," The journal of physical chemistry letters, vol. 6, no. 8, pp. 1461-1466, 2015.
[26] Y. Yang et al., "Top and bottom surfaces limit carrier lifetime in lead iodide perovskite films," Nature Energy, vol. 2, no. 2, pp. 1-7, 2017.
[27] B. Wu et al., "Discerning the surface and bulk recombination kinetics of organic–inorganic halide perovskite single crystals," Advanced Energy Materials, vol. 6, no. 14, p. 1600551, 2016.
[28] J. Wang et al., "Templated growth of oriented layered hybrid perovskites on 3D-like perovskites," Nature Communications, vol. 11, no. 1, p. 582, 2020.
[29] L. Yan et al., "General post-annealing method enables high-efficiency two-dimensional perovskite solar cells," ACS applied materials & interfaces, vol. 10, no. 39, pp. 33187-33197, 2018.
[30] Y. Xu, M. Wang, Y. Lei, Z. Ci, and Z. Jin, "Crystallization kinetics in 2D perovskite solar cells," Advanced Energy Materials, vol. 10, no. 43, p. 2002558, 2020.
[31] D. Lin, Z. Zhan, X. Huang, P. Liu, and W. Xie, "Advances in components engineering in vapor deposited perovskite thin film for photovoltaic application," Materials Today Advances, vol. 16, p. 100277, 2022.
[32] 光焱總部. "大氣質量 (Air Mass, AM)." 光焱總部. https://enlitechnology.com/zh-hant/blog-zh-hant/pv-zh-hant/ss-x-solar-simulatior-zh-hant/solar-simulator-01/ (accessed 2013).
[33] B. Qi and J. Wang, "Fill factor in organic solar cells," Physical Chemistry Chemical Physics, vol. 15, no. 23, pp. 8972-8982, 2013.
[34] 台. 布魯克光學有限公司. "掃描電鏡原理/掃描式電子顯微鏡原理." Taiwan. http://www.starjoy.com.tw/sem_theory_tw.html (accessed 2017).
[35] X. X. R. Diffractometer. "UV/Visible-紫外線/可見光分光光譜儀." Taiwan. http://higem.ncku.edu.tw/index.php?option=module&lang=cht&task=showlist&id=333&index=3 (accessed 2022).
[36] X. Deng, Z. Cao, C. Li, S. Wang, and F. Hao, "Benzotriazole derivative inhibits nonradiative recombination and improves the UV-stability of inverted MAPbI3 perovskite solar cells," Journal of Energy Chemistry, vol. 65, pp. 592-599, 2022.
[37] J. Kim, A. J. Yun, B. Gil, Y. Lee, and B. Park, "Triamine‐based aromatic cation as a novel stabilizer for efficient perovskite solar cells," Advanced Functional Materials, vol. 29, no. 44, p. 1905190, 2019.

無法下載圖示 全文公開日期 2025/08/30 (校內網路)
全文公開日期 2025/08/30 (校外網路)
全文公開日期 2025/08/30 (國家圖書館:臺灣博碩士論文系統)
QR CODE