簡易檢索 / 詳目顯示

研究生: 吳宜潔
I-Chieh Wu
論文名稱: 建構全細胞生物感測平臺用以 (a) 降解及偵測有機磷化合物對氧磷 (b) 感測及水解纖維素
Construction of a Whole-Cell Sensing Platform to (a) Degrade and Detect the Organophosphorus Compound Paraoxon (b) Sense and Hydrolyze the Cellulose
指導教授: 蔡伸隆
Shen-Long Tsai
口試委員: 李振綱
Cheng-Kang Lee
葉怡均
Yi-Chun Yeh
王勝仕
Sheng-Shih Wang
蔡伸隆
Shen-Long Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 80
中文關鍵詞: 對氧磷有機磷水解酶生物外膜囊泡轉錄因子全細胞生物感測器纖維素水解酶
外文關鍵詞: paraoxon, organophosphorus hydrolase, outer membrane vehicles, sigma factor, whole-cell biosensor, cellulase
相關次數: 點閱:187下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

對氧磷是殺蟲劑巴拉松的主要代謝物,會干擾生物之肌肉反應,並在重要器官引發嚴重症狀,最終導致死亡。因此,本研究擬建構出利用啟動子調控來偵測對氧磷的全細胞感測器,然而,目前尚未發現藉由對氧磷進行誘導的啟動子,而研究室先前的研究中,有一質體含有酚類誘導轉錄因子dmpR,可偵測對氧磷降解後之對硝基苯酚(p-nitrophenol, p-NP)。此外,由於有機磷水解酶(organophosphorous hydrolase, OPH)的胞內表達仍存在一些問題,因此本研究以可大量分泌生物外膜囊泡(Outer membrane vesicles, OMVs)的E. coli JC8031為宿主,將OPH展示在OMVs表面,並結合酚類誘導型啟動子調控綠螢光蛋白,當環境中之對氧磷被OPH降解後,產物p-NP會誘導綠螢光基因的轉錄,以產生螢光訊號。我們已證明此模型可成功降解並感測環境中之對氧磷並發出螢光訊號。

另一感測系統中,由於環保意識抬頭加上天然資源有限的情況下,生質能成為了可替代能源的一個重要選項。生質能是由生物質所轉換而成的能量,而生物質則是來自植物和動物的可再生有機材料,其所儲存的化學能可通過各種過程轉化為我們可利用的能量,其中,反應條件溫和與操作簡單的生物轉化法逐漸受到重視。近年來,透過基因改殖技術將許多能分泌生物質水解酶之基因植入菌體中並大量表達,使其能於含有生物質的反應槽中直接進行水解,以節省酶純化等成本。然而,持續大量表達菌體本身非必要的基因可能導致菌體負荷量過大,進而導致菌體死亡。因此,本研究仿造了Clostridium thermocellum的染色體基因序列,設計一感測系統。當RsgI2跨膜蛋白感測到環境中之纖維素,即會釋放σI2轉錄因子,進而促使綠螢光蛋白之表達。此外,亦建構另一感測系統,當環境中存在纖維素時,即會被分泌至胞外的纖維素水解酶水解,產生水解產物纖維二糖後,誘導紅螢光蛋白之轉錄。目前已有初步的系統建立與測試結果,後續將持續調整系統結構以有效地進行纖維素的感測與水解。


As paraoxon is presented, it will lead to the cholinergic crisis in human beings. Therefore, we intend to construct a whole-cell biosensor to detect paraoxon. However, no promoter induced by paraoxon has been found yet. Luckily, there is a plasmid contained the phenol-inducible transcription factor, dmpR, in the previous research of our lab. Moreover, since there are still some problems in the intracellular expression of organophosphorous hydrolase (OPH). Thus, in this study, OPH was displayed on the outer membrane vehicles secreted by E. coli JC8031. Then, we combined with the plasmid contained a phenol-inducible promoter to regulate green fluorescent protein. When the paraoxon is degraded by OPH, the product p-nitrophenol will induce the transcription of green fluorescent gene. We have demonstrated that this model can successfully degrade and measure paraoxon in the environment. In another project, due to the limited natural resources, bioenergy has become a vital option for renewable energy. The chemical energy stored in biomass can be converted into energy that can be used by human through various processes. Among them, the biological method with mild conditions and simple operation has gradually attracted more and more attention. In recent years, bacteria capable of secreting biomass hydrolase have been added into reaction chamber. However, continuous expression of non-essential genes in bacteria may cause excessive load, leading bacteria to death. Therefore, we design two systems in order to sense and hydrolyze the cellulose. As far, the preliminary system establishment and test results have been obtained, and the system will be continuously adjusted to finally meet our purposes.

摘要 Abstract 致謝 目錄 圖目錄 表目錄 第一章 緒論 1.1 降解及偵測有機磷化合物對氧磷之大腸桿菌菌株 1.1.1 研究背景 1.1.2 研究動機 1.1.3 研究內容 1.2 感測及水解纖維素之智慧型枯草芽孢桿菌菌株 1.2.1 研究背景 1.2.2 研究動機 1.2.3 研究內容 第二章 文獻回顧 2.1 全細胞生物傳感器 2.2 降解及偵測有機磷化合物對氧磷之大腸桿菌菌株 2.2.1 有機磷化合物 2.2.2 有機磷水解酶 2.2.3 生物外膜囊泡(Outer Membrane Vesicles, OMVs) 2.2.4 酚類誘導之轉錄調控基因 2.3 感測及水解纖維素之智慧型枯草芽孢桿菌菌株 2.3.1 木質纖維素 2.3.2 纖維素水解酶 2.3.3 組成型與誘導型啟動子 2.3.4 纖維素相關之轉錄因子與感測 第三章 實驗材料與方法 3.1 菌種與質體來源 3.2 藥品與儀器來源 3.3 實驗方法 3.3.1 基因轉殖技術 3.3.1.1 質體純化法 3.3.1.2 聚合酶連鎖反應(Polymerase chain reaction, PCR) 3.3.1.3 瓊脂糖凝膠電泳與回收 3.3.1.4 限制酶酶切(Digestion)與核酸接合(Ligation)作用 3.3.1.5 Gibson Assembly 3.3.1.6 大腸桿菌勝任細胞(Competent Cell)之製備 3.3.1.7 大腸桿菌轉型作用(Transformation) 3.3.1.8 枯草芽孢桿菌電穿孔勝任細胞(Competent Cell)之製備 3.3.1.9 枯草芽孢桿菌電穿孔轉型作用(Electroporation) 3.3.1.10 枯草芽孢桿菌勝任細胞(Competent Cell)之製備 3.3.1.11 枯草芽孢桿菌轉型作用(Transformation) 3.3.2 綠螢光蛋白強度測定 3.3.2.1 OPH降解與酚類誘導轉錄因子活性測定 3.3.2.2 P43啟動子活性測定 3.3.2.3 SigI2轉錄因子活性測定 3.3.2.4 RsgI2轉錄因子活性測定 3.3.3 免疫螢光蛋白分析 3.3.4 DNS還原糖測定 第四章 結果與討論 4.1 降解及偵測有機磷化合物對氧磷之大腸桿菌菌株 4.1.1 pETdmpRGFP(Amp)質體建構 4.1.2 誘導時間對綠螢光蛋白強度之影響 4.1.3 對氧磷濃度對綠螢光蛋白強度之影響 4.1.4 pH值對綠螢光蛋白強度之影響 4.1.5 不同誘導物對綠螢光強度之影響 4.1.6 pETdmpRGFP(Amp)進行RBS修改之質體建構 4.1.7 RBS序列對綠螢光蛋白強度之影響 4.1.8 RBS序列修改後綠螢光強度隨對氧磷濃度之變化 4.1.9 RBS序列修改後不同誘導物對綠螢光強度變化之影響 4.2 利用σI2 - RsgI2系統感測纖維素 4.2.1 pMK-P43m-C3GFP與pMK-P43m質體之建構 4.2.2 組成型啟動子P43之測試 4.2.3 pPsigI2-GFP-P43m-S2與pPsigI2-P43m-S2質體建構 4.2.4 σI2轉錄因子與其相應啟動子PsigI2之活性測試 4.2.5 pPS2-GFP-P43m-S2R2與pPS2-GFP-P43m-S2RS2(ΔRBS)質體 4.2.6 跨膜蛋白RsgI2之活性測試 4.3 結合纖維素水解酶與纖維二糖誘導型啟動子以水解及感測纖維素 4.3.1. pChCACSmR質體之建構 4.3.2. pChCACSmR-BS之質體建構 4.3.3. pBS4-PliaG-bglS-CelA-xynA-CelS與pMK-PlicB-mCh質體建構 第五章 結論與未來展望 5.1. 降解及偵測有機磷化合物對氧磷之大腸桿菌菌株 5.2. 感測及水解纖維素之智慧型枯草芽孢桿菌菌株 參考資料 附錄

1. Thakur, M.; Medintz, I. L.; Walper, S. A., Enzymatic Bioremediation of Organophosphate Compounds—Progress and Remaining Challenges. Frontiers in Bioengineering and Biotechnology 2019, 7.
2. Singh, B. K.; Walker, A., Microbial degradation of organophosphorus compounds. FEMS Microbiology Reviews 2006, 30 (3), 428-471.
3. Shimazu, M.; Mulchandani, A.; Chen, W., Cell Surface Display of Organophosphorus Hydrolase Using Ice Nucleation Protein. Biotechnology Progress 2001, 17 (1), 76-80.
4. Richins, R. D.; Kaneva, I.; Mulchandani, A.; Chen, W., Biodegradation of organophosphorus pesticides by surface-expressed organophosphorus hydrolase. Nature Biotechnology 1997, 15 (10), 984-987.
5. Jung, H. C.; Park, J. H.; Park, S. H.; Lebeault, J. M.; Pan, J. G., Expression of carboxymethylcellulase on the surface of Escherichia coli using Pseudomonas syringae ice nucleation protein. Enzyme Microb Technol 1998, 22 (5), 348-54.
6. Su, F.-H.; Tabañag, I. D. F.; Wu, C.-Y.; Tsai, S.-L., Decorating outer membrane vesicles with organophosphorus hydrolase and cellulose binding domain for organophosphate pesticide degradation. Chemical Engineering Journal 2017, 308, 1-7.
7. Raut, N.; O’Connor, G.; Pasini, P.; Daunert, S., Engineered cells as biosensing systems in biomedical analysis. Analytical and Bioanalytical Chemistry 2012, 402 (10), 3147-3159.
8. Fernandez-López, R.; Ruiz, R.; de la Cruz, F.; Moncalián, G., Transcription factor-based biosensors enlightened by the analyte. Front Microbiol 2015, 6, 648.
9. Mitsis, T.; Efthimiadou, A.; Bacopoulou, F.; Vlachakis, D.; Chrousos, G. P.; Eliopoulos, E., Transcription factors and evolution: An integral part of gene expression (Review). World Acad Sci J 2020, 2 (1), 3-8.
10. Gui, Q.; Lawson, T.; Shan, S.; Yan, L.; Liu, Y., The Application of Whole Cell-Based Biosensors for Use in Environmental Analysis and in Medical Diagnostics. Sensors (Basel) 2017, 17 (7).
11. Cormack, B. P.; Valdivia, R. H.; Falkow, S., FACS-optimized mutants of the green fluorescent protein (GFP). Gene 1996, 173 (1), 33-38.
12. Costa, L. G., Organophosphorus Compounds at 80: Some Old and New Issues. Toxicological Sciences 2017, 162 (1), 24-35.
13. Jacquet, P.; Daudé, D.; Bzdrenga, J.; Masson, P.; Elias, M.; Chabrière, E., Current and emerging strategies for organophosphate decontamination: special focus on hyperstable enzymes. Environmental Science and Pollution Research 2016, 23 (9), 8200-8218.
14. Latip, W.; Knight, V. F.; Abdul Halim, N.; Ong, K. K.; Mohd Kassim, N. A.; Wan Yunus, W. M. Z.; Mohd Noor, S. A.; Mohamad Ali, M. S., Microbial Phosphotriesterase: Structure, Function, and Biotechnological Applications. Catalysts 2019, 9 (8), 671.
15. Work, E.; Knox, K. W.; Vesk, M., THE CHEMISTRY AND ELECTRON MICROSCOPY OF AN EXTRACELLULAR LIPOPOLYSACCHARIDE FROM ESCHERICHIA COLI. Annals of the New York Academy of Sciences 1966, 133 (2), 438-449.
16. Lee, E.-Y.; Choi, D.-S.; Kim, K.-P.; Gho, Y. S., Proteomics in gram-negative bacterial outer membrane vesicles. Mass Spectrometry Reviews 2008, 27 (6), 535-555.
17. Aguilera, L.; Toloza, L.; Giménez, R.; Odena, A.; Oliveira, E.; Aguilar, J.; Badia, J.; Baldomà, L., Proteomic analysis of outer membrane vesicles from the probiotic strain Escherichia coli Nissle 1917. Proteomics 2014, 14 (2-3), 222-9.
18. Li, M.; Zhou, H.; Yang, C.; Wu, Y.; Zhou, X.; Liu, H.; Wang, Y., Bacterial outer membrane vesicles as a platform for biomedical applications: An update. Journal of Controlled Release 2020, 323, 253-268.
19. Bonnington, K. E.; Kuehn, M. J., Protein selection and export via outer membrane vesicles. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2014, 1843 (8), 1612-1619.
20. Shingler, V.; Moore, T., Sensing of aromatic compounds by the DmpR transcriptional activator of phenol-catabolizing Pseudomonas sp. strain CF600. J Bacteriol 1994, 176 (6), 1555-60.
21. Bajpai, P., Structure of Lignocellulosic Biomass. In Pretreatment of Lignocellulosic Biomass for Biofuel Production, Springer Singapore: Singapore, 2016; pp 7-12.
22. Chandra, R. P.; Bura, R.; Mabee, W. E.; Berlin, A.; Pan, X.; Saddler, J. N., Substrate Pretreatment: The Key to Effective Enzymatic Hydrolysis of Lignocellulosics? In Biofuels, Olsson, L., Ed. Springer Berlin Heidelberg: Berlin, Heidelberg, 2007; pp 67-93.
23. Yu, Y.; Wu, H., Significant Differences in the Hydrolysis Behavior of Amorphous and Crystalline Portions within Microcrystalline Cellulose in Hot-Compressed Water. Industrial & Engineering Chemistry Research 2010, 49 (8), 3902-3909.
24. Horn, S. J.; Vaaje-Kolstad, G.; Westereng, B.; Eijsink, V., Novel enzymes for the degradation of cellulose. Biotechnology for Biofuels 2012, 5 (1), 45.
25. Carrard, G.; Koivula, A.; Söderlund, H.; Béguin, P., Cellulose-binding domains promote hydrolysis of different sites on crystalline cellulose. Proceedings of the National Academy of Sciences 2000, 97 (19), 10342-10347.
26. Karni, S. In Analysis of Biological Networks : Transcriptional Networks-Promoter Sequence Analysis, 2007.
27. Guiziou, S.; Sauveplane, V.; Chang, H. J.; Clerté, C.; Declerck, N.; Jules, M.; Bonnet, J., A part toolbox to tune genetic expression in Bacillus subtilis. Nucleic Acids Res 2016, 44 (15), 7495-508.
28. Kim, J.-H.; Hwang, B.-Y.; Roh, J.; Lee, J.-K.; Kim, K.; Wong, S.-L.; Yun, H.; Lee, S.-G.; Kim, B.-G., Comparison of PaprE, PamyE, and PP43promoter strength for β-galactosidase and staphylokinase expression in Bacillus subtilis. Biotechnology and Bioprocess Engineering 2008, 13 (3), 313.
29. Jordan, S.; Junker, A.; Helmann, J. D.; Mascher, T., Regulation of LiaRS-Dependent Gene Expression in Bacillus subtilis: Identification of Inhibitor Proteins, Regulator Binding Sites, and Target Genes of a Conserved Cell Envelope Stress-Sensing Two-Component System. Journal of Bacteriology 2006, 188 (14), 5153-5166.
30. Heravi, K. M.; Altenbuchner, J., Regulation of the Bacillus subtilis mannitol utilization genes: promoter structure and transcriptional activation by the wild-type regulator (MtlR) and its mutants. Microbiology (Reading) 2014, 160 (Pt 1), 91-101.
31. Bayer, E. A.; Belaich, J.-P.; Shoham, Y.; Lamed, R., The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu. Rev. Microbiol. 2004, 58, 521-554.
32. Asai, K.; Ootsuji, T.; Obata, K.; Matsumoto, T.; Fujita, Y.; Sadaie, Y., Regulatory role of RsgI in sigI expression in Bacillus subtilis. Microbiology 2007, 153 (1), 92-101.
33. Kahel-Raifer, H.; Jindou, S.; Bahari, L.; Nataf, Y.; Shoham, Y.; Bayer, E. A.; Borovok, I.; Lamed, R., The unique set of putative membrane-associated anti-σ factors in Clostridium thermocellum suggests a novel extracellular carbohydrate-sensing mechanism involved in gene regulation. FEMS Microbiology Letters 2010, 308 (1), 84-93.
34. Nataf, Y.; Bahari, L.; Kahel-Raifer, H.; Borovok, I.; Lamed, R.; Bayer, E. A.; Sonenshein, A. L.; Shoham, Y., Clostridium thermocellum cellulosomal genes are regulated by extracytoplasmic polysaccharides via alternative sigma factors. Proceedings of the National Academy of Sciences 2010, 107 (43), 18646-18651.
35. Muñoz-Gutiérrez, I.; Ortiz de Ora, L.; Rozman Grinberg, I.; Garty, Y.; Bayer, E. A.; Shoham, Y.; Lamed, R.; Borovok, I., Decoding Biomass-Sensing Regulons of Clostridium thermocellum Alternative Sigma-I Factors in a Heterologous Bacillus subtilis Host System. PLOS ONE 2016, 11 (1), e0146316.
36. Ortiz de Ora, L.; Lamed, R.; Liu, Y.-J.; Xu, J.; Cui, Q.; Feng, Y.; Shoham, Y.; Bayer, E. A.; Muñoz-Gutiérrez, I., Regulation of biomass degradation by alternative σ factors in cellulolytic clostridia. Scientific Reports 2018, 8 (1), 11036.
37. Campbell, T. N. In The Effect of pH on Green Fluorescent Protein: a Brief Review, 2001.
38. AlRabiah, H.; Allwood, J. W.; Correa, E.; Xu, Y.; Goodacre, R., pH plays a role in the mode of action of trimethoprim on Escherichia coli. PLOS ONE 2018, 13 (7), e0200272.
39. Wang, B.; Kitney, R. I.; Joly, N.; Buck, M., Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology. Nat Commun 2011, 2, 508.
40. Xu, C.; Huang, R.; Teng, L.; Wang, D.; Hemme, C. L.; Borovok, I.; He, Q.; Lamed, R.; Bayer, E. A.; Zhou, J.; Xu, J., Structure and regulation of the cellulose degradome in Clostridium cellulolyticum. Biotechnology for Biofuels 2013, 6 (1), 73.
41. Ohse, M.; Takahashi, K.; Kadowaki, Y.; Kusaoke, H., Effects of plasmid DNA sizes and several other factors on transformation of Bacillus subtilis ISW1214 with plasmid DNA by electroporation. Biosci Biotechnol Biochem 1995, 59 (8), 1433-7.
42. Lilly, J.; Camps, M.; Tolmasky, M.; Alonso, J. C., Mechanisms of Theta Plasmid Replication. Microbiology Spectrum 2015, 3 (1), 3.1.02.
43. Guérout-Fleury, A.-M.; Frandsen, N.; Stragier, P., Plasmids for ectopic integration in Bacillus subtilis. Gene 1996, 180 (1), 57-61.
44. Radeck, J.; Kraft, K.; Bartels, J.; Cikovic, T.; Dürr, F.; Emenegger, J.; Kelterborn, S.; Sauer, C.; Fritz, G.; Gebhard, S.; Mascher, T., The Bacillus BioBrick Box: generation and evaluation of essential genetic building blocks for standardized work with Bacillus subtilis. Journal of Biological Engineering 2013, 7 (1), 29.
45. Nguyen, H. D.; Nguyen, Q. A.; Ferreira, R. C.; Ferreira, L. C. S.; Tran, L. T.; Schumann, W., Construction of plasmid-based expression vectors for Bacillus subtilis exhibiting full structural stability. Plasmid 2005, 54 (3), 241-248.

無法下載圖示 全文公開日期 2032/08/09 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE