簡易檢索 / 詳目顯示

研究生: 高啟昌
Chi-Chang Kao
論文名稱: 釩酸鉍光陽極晶面改質工程應用於光電化學甘油氧化反應
Crystal Engineering of BiVO4 Photoanodes for Photoelectrochemical Glycerol Oxidation Reaction
指導教授: 江佳穎
Chia-Ying Chiang
口試委員: 鄧熙聖
Hsi-Sheng Teng
蔡大翔
Dah-Shyang Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 88
中文關鍵詞: 釩酸鉍結晶面向甘油氧化光電化學
外文關鍵詞: BiVO4, crystal facets, glycerol oxidation, photoelectrochemical
相關次數: 點閱:184下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

半導體光觸媒晶面改質工程被認為是調整其物理化學性質並優化材料的光電化學活性的新興策略。在這裡,我們首次報導了BiVO4晶體表面對光電化學甘油氧化反應影響的全方位實驗分析。本研究透過水熱法製備兩種不同晶面暴露面向的單斜晶型BiVO4,分別是晶格生長面向為常規單斜晶型的BiVO4 (R-BVO),以及控制生長結晶面向為{010}的BiVO4 (C-BVO),並發現在模擬太陽光的照射下,C-BVO提供了更高的甘油電催化氧化作用。與R-BVO (0.85 mA/cm2)相比,C-BVO記載了更高的光電流密度(1.3 mA/cm2)。除此之外,C-BVO還產生了更高的產量(yield of product),並且擁有較高的高經濟價值產物二羥基丙酮(DHA)的產物選擇率(selectivity)。實際上,可以發現DHA對C-BVO的產物選擇率大約為60 %,是迄今為止報導的最高值之一。在本研究中發現甘油對於{010}結晶面向的吸附是造成BiVO4催化活性差異的關鍵因素,並且揭曉C-BVO具有更高的電荷載流子密度以及有效的促進電子電洞對分離,導致對甘油氧化和光電流的光電化學活性大大增強。這項研究為晶面結構和催化性能之間的關係提供新見解,這可能為光電化學甘油氧化反應的最佳觸媒設計提供了啟示。


Crystal facet engineering of semiconductor photocatalysts is regarded as an emerging strategy to tune their physicochemical properties and optimize the photoelectrochemical activity of the materials. Herein, we report a comprehensive experimental analysis of the effect of BiVO4 crystal surfaces on the photoelectrochemical glycerol oxidation reaction for the first time. In this study, two types of monoclinic BiVO4 exposed by different crystal facets, i.e. regular monoclinic BiVO4 (R-BVO) and controlled growth crystal facets of {010}-oriented BiVO4 (C-BVO), were prepared by a simple hydrothermal method. It was found that C-BVO delivered a much higher glycerol electrocatalytic oxidation under the simulated sunlight irradiation than R-BVO. Accordingly, a higher photocurrent density of 1.3 mA/cm2 was recorded for C-BVO compared to that of R-BVO (0.85 mA/cm2). Additionally, C-BVO also produced a larger yield of products and slightly higher selectivity toward highly-valuable dihydroxyacetone (DHA) products than its counterpart. Indeed, the selectivity of DHA was found to be about 60% for C-BVO, which is among the highest values reported so far. The preference of glycerol to adsorb on the {010} facet has been found to be a factor that determines the activity of BiVO4. Additionally, it was disclosed that BiVO4 with exposed {010} facets possess higher charge carrier density and efficient intrinsic electron-hole separation, thereby resulting in highly enhanced photoelectrochemical activity toward glycerol oxidation and photocurrent generation. This study provides new insights into the relationship between the facet structure and catalytic properties that may shed light on the design of optimum catalyst toward photoelectrochemical glycerol oxidation reaction.

摘要 i Abstract ii 目錄 iii 圖目錄 vi 表目錄 ix 第一章 緒論 1 1.1 研究動機 1 1.2 研究方向 2 第二章 文獻回顧 3 2.1 生質柴油的副產物 甘油 3 2.2 甘油轉換成其他產物方式 4 2.3 甘油氧化 5 2.3.1 甘油氧化經濟產物 6 2.3.2 熱催化甘油氧化 7 2.3.3 光催化甘油氧化 8 2.3.4 電催化甘油氧化 9 2.3.5 光電化學甘油氧化 10 2.4 影響甘油氧化參數探討 11 2.4.1 各種參數造成甘油選擇率之影響 11 2.4.2 晶格暴露面向造成甘油選擇率之影響 12 2.5 半導體材料釩酸鉍 14 第三章 實驗設備與儀器原理 15 3.1 實驗架構 15 3.2 實驗藥品、材料、設備及分析儀器 16 3.3 BiVO4光陽極置備流程 18 3.3.1 基材置備流程 18 3.3.2 BiVO4種子層置備流程 18 3.3.3 水熱法BiVO4光陽極薄膜置備流程 19 3.3.4 水熱法生成金屬氧化物釩酸鉍反應過程探討 20 3.4 實驗原理介紹 22 3.4.1 儀器分析原理 22 3.4.1.1 X光繞射儀(X-ray Diffraction,XRD) 22 3.4.1.2 場發射掃描式電子顯微鏡(Field-Emission Scanning Electron Microscopy,FESEM) 22 3.4.1.3 穿透式電子顯微鏡(Transmission electron microscopy,TEM) 23 3.4.1.4 X射線光電子能譜儀(X-ray photoelectron spectroscopy,XPS) 23 3.4.1.5 紫外光/可見光光譜儀(UV-Vis spectroscopy) 23 3.4.1.6 螢光光譜儀(Photoluminescence,PL) 24 3.4.1.7 傅立葉轉換紅外線光譜儀(Fourier-Transform Infrared spectroscopy,FTIR) 24 3.4.1.8 氣相層析儀(Gas Chromatography,GC) 25 3.4.1.9 高效能液相層析儀(High Performance Liquid Chromatography,HPLC) 26 3.4.2 光電化學原理 27 3.4.2.1 線性掃描伏安法 (Linear Sweep Voltammetry) 28 3.4.2.2 計時安培測定法 (Chrono-amperometry) 28 3.4.2.3 電化學阻抗頻譜法 (Electrochemical Impedance Spectroscopy,EIS) 28 3.4.2.4 莫特-肖特基電化學測定法 (Mott-Schottky) 28 3.4.2.5 入射光光電子轉換效率 (Incident Photon-to-Current Efficiency,IPCE) 30 第四章 實驗結果與討論 31 4.1 結構與型態特徵分析 31 4.1.1 結構分析 31 4.1.2 型態特徵分析 33 4.2 光電化學甘油氧化表現分析 36 4.3 光電極反應前後特徵分析 37 4.4 產物分析 39 4.4.1 液相產物(HPLC)分析 39 4.4.2 氣相產物(GC)分析 43 4.5 結晶面向對於光電化學甘油氧化反應影響 45 4.5.1 甘油在材料表面吸附現象探討 45 4.5.2 不同結晶面向中電荷傳遞探討 46 4.6 最佳化材料於不同條件之分析 50 4.6.1 甘油濃度 50 4.6.2 施加電位 52 4.6.3 pH值 54 4.6.4 輔助電解質 57 4.7 反應路徑分析 59 第五章 結論 61 參考資料 62 附錄 74

[1] N.Z.Muradov, How to produce hydrogen from fossil fuels without CO2 emission, Int. J. Hydrogen Energy. 18 (1993) 211–215.
[2] B.Katryniok, H.Kimura, E.Skrzyńska, J.S.Girardon, P.Fongarland, M.Capron, R.Ducoulombier, N.Mimura, S.Paul, F.Dumeignil, Selective catalytic oxidation of glycerol: Perspectives for high value chemicals, Green Chem. 13 (2011) 1960–1979.
[3] Y.Park, K.J.McDonald, K.S.Choi, Progress in bismuth vanadate photoanodes for use in solar water oxidation, Chem. Soc. Rev. 42 (2013) 2321–2337.
[4] A.Talebian-Kiakalaieh, N.A.S.Amin, K.Rajaei, S.Tarighi, Oxidation of bio-renewable glycerol to value-added chemicals through catalytic and electro-chemical processes, Appl. Energy. 230 (2018) 1347–1379.
[5] H.J.Kim, Y.Kim, D.Lee, J.R.Kim, H.J.Chae, S.Y.Jeong, B.S.Kim, J.Lee, G.W.Huber, J.Byun, S.Kim, J.Han, Coproducing Value-Added Chemicals and Hydrogen with Electrocatalytic Glycerol Oxidation Technology: Experimental and Techno-Economic Investigations, ACS Sustain. Chem. Eng. 5 (2017) 6626–6634.
[6] G.Dodekatos, S.Schünemann, H.Tüysüz, Recent Advances in Thermo-, Photo-, and Electrocatalytic Glycerol Oxidation, ACS Catal. 8 (2018) 6301–6333.
[7] D.Sun, Y.Yamada, S.Sato, W.Ueda, Glycerol as a potential renewable raw material for acrylic acid production, Green Chem. 19 (2017) 3186–3213.
[8] N.Narkhede, A.Patel, Sustainable valorisation of glycerol via acetalization as well as carboxylation reactions over silicotungstates anchored to zeolite Hβ, Appl. Catal. A Gen. 515 (2016) 154–163.
[9] J.R.Ochoa-Gómez, O.Gómez-Jiménez-Aberasturi, B.Maestro-Madurga, A.Pesquera-Rodríguez, C.Ramírez-López, L.Lorenzo-Ibarreta, J.Torrecilla-Soria, M.C.Villarán-Velasco, Synthesis of glycerol carbonate from glycerol and dimethyl carbonate by transesterification: Catalyst screening and reaction optimization, Appl. Catal. A Gen. 366 (2009) 315–324.
[10] J.F.Izquierdo, M.Montiel, I.Palés, P.R.Outón, M.Galán, L.Jutglar, M.Villarrubia, M.Izquierdo, M.P.Hermo, X.Ariza, Fuel additives from glycerol etherification with light olefins: State of the art, Renew. Sustain. Energy Rev. 16 (2012) 6717–6724.
[11] S.Wang, K.Yin, Y.Zhang, H.Liu, Glycerol hydrogenolysis to propylene glycol and ethylene glycol on zirconia supported noble metal catalysts, ACS Catal. 3 (2013) 2112–2121.
[12] A.Parvulescu, M.Rossi, C.DellaPina, R.Ciriminna, M.Pagliaro, Investigation of glycerol polymerization in the clinker grinding process, Green Chem. 13 (2011) 143–148.
[13] F.Fantozzi, A.Frassoldati, P.Bartocci, G.Cinti, F.Quagliarini, G.Bidini, E.M.Ranzi, An experimental and kinetic modeling study of glycerol pyrolysis, Appl. Energy. 184 (2016) 68–76.
[14] M.S.E.Houache, K.Hughes, E.A.Baranova, Study on catalyst selection for electrochemical valorization of glycerol, Sustain. Energy Fuels. 3 (2019) 1892–1915.
[15] J.Qi, L.Xin, D.J.Chadderdon, Y.Qiu, Y.Jiang, N.Benipal, C.Liang, W.Li, Electrocatalytic selective oxidation of glycerol to tartronate on Au/C anode catalysts in anion exchange membrane fuel cells with electricity cogeneration, Appl. Catal. B Environ. 154–155 (2014) 360–368.
[16] X.Hua, R.Cao, X.Zhou, Y.Xu, Integrated process for scalable bioproduction of glycolic acid from cell catalysis of ethylene glycol, Bioresour. Technol. 268 (2018) 402–407.
[17] S.SenLiu, K.Q.Sun, B.Q.Xu, Specific selectivity of Au-catalyzed oxidation of glycerol and other C 3-polyols in water without the presence of a base, ACS Catal. 4 (2014) 2226–2230.
[18] E.Farnetti, C.Crotti, Selective oxidation of glycerol to formic acid catalyzed by iron salts, Catal. Commun. 84 (2016) 1–4.
[19] H.Kimura, K.Tsuto, T.Wakisaka, Y.Kazumi, Y.Inaya, Selective oxidation of glycerol on a platinum-bismuth catalyst, Appl. Catal. A, Gen. 96 (1993) 217–228.
[20] R.K.P.Purushothaman, J.vanHaveren, D.S.vanEs, I.Melián-Cabrera, J.D.Meeldijk, H.J.Heeres, An efficient one pot conversion of glycerol to lactic acid using bimetallic gold-platinum catalysts on a nanocrystalline CeO2 support, Appl. Catal. B Environ. 147 (2014) 92–100.
[21] M.Kapkowski, P.Bartczak, M.Korzec, R.Sitko, J.Szade, K.Balin, J.Lelątko, J.Polanski, SiO2-, Cu-, and Ni-supported Au nanoparticles for selective glycerol oxidation in the liquid phase, J. Catal. 319 (2014) 110–118.
[22] J.Xu, H.Zhang, Y.Zhao, B.Yu, S.Chen, Y.Li, L.Hao, Z.Liu, Selective oxidation of glycerol to lactic acid under acidic conditions using AuPd/TiO2 catalyst, Green Chem. 15 (2013) 1520–1525.
[23] C.H.Zhou, J.N.Beltramini, C.X.Lin, Z.P.Xu, G.Q.Lu, A.Tanksale, Selective oxidation of biorenewable glycerol with molecular oxygen over Cu-containing layered double hydroxide-based catalysts, Catal. Sci. Technol. 1 (2011) 111–122.
[24] G.Dodekatos, H.Tüysüz, Effect of Post-Treatment on Structure and Catalytic Activity of CuCo-based Materials for Glycerol Oxidation, ChemCatChem. 9 (2017) 610–619.
[25] X.Wang, G.Wu, F.Wang, K.Ding, F.Zhang, X.Liu, Y.Xue, Base-free selective oxidation of glycerol with 3% H2O2 catalyzed by sulphonato-salen-chromium(III) intercalated LDH, Catal. Commun. 28 (2012) 73–76.
[26] V.Maurino, A.Bedini, M.Minella, F.Rubertelli, E.Pelizzetti, C.Minero, Glycerol transformation through photocatalysis: A possible route to value added chemicals, J. Adv. Oxid. Technol. 11 (2008) 184–192.
[27] V.Augugliaro, H.A.H.ElNazer, V.Loddo, A.Mele, G.Palmisano, L.Palmisano, S.Yurdakal, Partial photocatalytic oxidation of glycerol in TiO2 water suspensions, Catal. Today. 151 (2010) 21–28.
[28] T.Montini, V.Gombac, L.Sordelli, J.J.Delgado, X.Chen, G.Adami, P.Fornasiero, Nanostructured Cu/TiO2 photocatalysts for H2 production from ethanol and glycerol aqueous solutions, ChemCatChem. 3 (2011) 574–577.
[29] H.Sakurai, M.Kiuchi, C.Heck, T.Jin, Hydrogen evolution from glycerol aqueous solution under aerobic conditions over Pt/TiO2 and Au/TiO2 granular photocatalysts, Chem. Commun. 52 (2016) 13612–13615.
[30] Y.Zhang, N.Zhang, Z.R.Tang, Y.J.Xu, Identification of Bi2WO6 as a highly selective visible-light photocatalyst toward oxidation of glycerol to dihydroxyacetone in water, Chem. Sci. 4 (2013) 1820–1824.
[31] S.Zhao, Z.Dai, W.Guo, F.Chen, Y.Liu, R.Chen, Highly selective oxidation of glycerol over Bi/Bi3.64Mo0.36O6.55 heterostructure: Dual reaction pathways induced by photogenerated 1O2 and holes, Appl. Catal. B Environ. 244 (2019) 206–214.
[32] A.Zalineeva, S.Baranton, C.Coutanceau, How do Bi-modified palladium nanoparticles work towards glycerol electrooxidation? An in situ FTIR study, Electrochim. Acta. 176 (2015) 705–717.
[33] C.Dai, L.Sun, H.Liao, B.Khezri, R.D.Webster, A.C.Fisher, Z.J.Xu, Electrochemical production of lactic acid from glycerol oxidation catalyzed by AuPt nanoparticles, J. Catal. 356 (2017) 14–21.
[34] Y.Zhou, Y.Shen, J.Xi, X.Luo, Selective Electro-Oxidation of Glycerol to Dihydroxyacetone by PtAg Skeletons, ACS Appl. Mater. Interfaces. 11 (2019) 28953–28959.
[35] M.Etesami, N.Mohamed, Catalytic application of gold nanoparticles electrodeposited by fast scan cyclic voltammetry to glycerol electrooxidation in alkaline electrolyte, Int. J. Electrochem. Sci. 6 (2011) 4676–4689.
[36] C.Liu, M.Hirohara, T.Maekawa, R.Chang, T.Hayashi, C.Y.Chiang, Selective electro-oxidation of glycerol to dihydroxyacetone by a non-precious electrocatalyst – CuO, Appl. Catal. B Environ. 265 (2020) 118543.
[37] S.Sun, L.Sun, S.Xi, Y.Du, M.U.Anu Prathap, Z.Wang, Q.Zhang, A.Fisher, Z.J.Xu, Electrochemical oxidation of C3 saturated alcohols on Co3O4 in alkaline, Electrochim. Acta. 228 (2017) 183–194.
[38] Y.Z.Su, Q.Z.Xu, Q.S.Zhong, C.J.Zhang, S.T.Shi, C.W.Xu, Oxide (Co3O4, NiO, Mn3O4, MgO) promoted Au/C catalyst for glycerol electrooxidation in alkaline medium, Mater. Res. Bull. 64 (2015) 301–305.
[39] Z.Zhang, L.Xin, W.Li, Electrocatalytic oxidation of glycerol on Pt/C in anion-exchange membrane fuel cell: Cogeneration of electricity and valuable chemicals, Appl. Catal. B Environ. 119–120 (2012) 40–48.
[40] Z.Zhang, L.Xin, J.Qi, D.J.Chadderdon, K.Sun, K.M.Warsko, W.Li, Selective electro-oxidation of glycerol to tartronate or mesoxalate on Au nanoparticle catalyst via electrode potential tuning in anion-exchange membrane electro-catalytic flow reactor, Appl. Catal. B Environ. 147 (2014) 871–878.
[41] L.Xin, Z.Zhang, Z.Wang, W.Li, Simultaneous Generation of Mesoxalic Acid and Electricity from Glycerol on a Gold Anode Catalyst in Anion-Exchange Membrane Fuel Cells, ChemCatChem. 4 (2012) 1105–1114.
[42] M.Simões, S.Baranton, C.Coutanceau, Electrochemical valorisation of glycerol, ChemSusChem. 5 (2012) 2106–2124.
[43] Y.Yu, P.Guo, J.S.Zhong, Y.Yuan, K.Y.Ye, Merging photochemistry with electrochemistry in organic synthesis, Org. Chem. Front. 7 (2019) 131–135.
[44] Y.Lee, S.Kim, S.Y.Jeong, S.Seo, C.Kim, H.Yoon, H.W.Jang, S.Lee, Surface-Modified Co-doped ZnO Photoanode for Photoelectrochemical Oxidation of Glycerol, Catal. Today. (2019) 1–7.
[45] R.Chong, B.Wang, D.Li, Z.Chang, L.Zhang, Enhanced photoelectrochemical activity of Nickel-phosphate decorated phosphate-Fe2O3 photoanode for glycerol-based fuel cell, Sol. Energy Mater. Sol. Cells. 160 (2017) 287–293.
[46] D.Liu, J.C.Liu, W.Cai, J.Ma, H.BinYang, H.Xiao, J.Li, Y.Xiong, Y.Huang, B.Liu, Selective photoelectrochemical oxidation of glycerol to high value-added dihydroxyacetone, Nat. Commun. 10 (2019).
[47] Y.Kwon, K.J.P.Schouten, M.T.M.Koper, Mechanism of the Catalytic Oxidation of Glycerol on Polycrystalline Gold and Platinum Electrodes, ChemCatChem. 3 (2011) 1176–1185.
[48] Z.Zhang, L.Xin, J.Qi, Z.Wang, W.Li, Selective electro-conversion of glycerol to glycolate on carbon nanotube supported gold catalyst, Green Chem. 14 (2012) 2150–2152.
[49] J.dePaula, D.Nascimento, J.J.Linares, Influence of the anolyte feed conditions on the performance of an alkaline glycerol electroreforming reactor, J. Appl. Electrochem. 45 (2015) 689–700.
[50] X.Ning, Y.Li, H.Yu, F.Peng, H.Wang, Y.Yang, Promoting role of bismuth and antimony on Pt catalysts for the selective oxidation of glycerol to dihydroxyacetone, J. Catal. 335 (2016) 95–104.
[51] J.F.Gomes, G.Tremiliosi-Filho, Spectroscopic Studies of the Glycerol Electro-Oxidation on Polycrystalline Au and Pt Surfaces in Acidic and Alkaline Media, Electrocatalysis. 2 (2011) 96–105.
[52] S.Lee, H.J.Kim, E.J.Lim, Y.Kim, Y.Noh, G.W.Huber, W.B.Kim, Highly selective transformation of glycerol to dihydroxyacetone without using oxidants by a PtSb/C-catalyzed electrooxidation process, Green Chem. 18 (2016) 2877–2887.
[53] P.Yang, J.Pan, Y.Liu, X.Zhang, J.Feng, S.Hong, D.Li, Insight into the Role of Unsaturated Coordination O2c-Ti5c-O2c Sites on Selective Glycerol Oxidation over AuPt/TiO2 Catalysts, ACS Catal. 9 (2019) 188–199.
[54] A.C.Garcia, M.J.Kolb, C.VanNierop Y Sanchez, J.Vos, Y.Y.Birdja, Y.Kwon, G.Tremiliosi-Filho, M.T.M.Koper, Strong Impact of Platinum Surface Structure on Primary and Secondary Alcohol Oxidation during Electro-Oxidation of Glycerol, ACS Catal. 6 (2016) 4491–4500.
[55] J.Zhou, J.Hu, X.Zhang, J.Li, K.Jiang, Y.Liu, G.Zhao, X.Wang, H.Chu, Facet effect of Pt nanocrystals on catalytical properties toward glycerol oxidation reaction, J. Catal. 381 (2020) 434–442.
[56] R.Chong, J.Li, X.Zhou, Y.Ma, J.Yang, L.Huang, H.Han, F.Zhang, C.Li, Selective photocatalytic conversion of glycerol to hydroxyacetaldehyde in aqueous solution on facet tuned TiO2-based catalysts, Chem. Commun. 50 (2014) 165–167.
[57] N.Tabaja, S.Casale, D.Brouri, A.Davidson, H.Obeid, J.Toufaily, T.Hamieh, Semiconductor-Based Photocatalysts and Photoelectrochemical Cells for Solar Fuel Generation: A Review, Comptes Rendus Chim. 18 (2015) 358–367.
[58] A.Walsh, Y.Yan, M.N.Huda, M.M.Al-Jassim, S.H.Wei, Band edge electronic structure of BiVO4: Elucidating the role of the Bi s and V d orbitals, Chem. Mater. 21 (2009) 547–551.
[59] B.C.Xiao, L.Y.Lin, J.Y.Hong, H.S.Lin, Y.T.Song, Synthesis of a monoclinic BiVO4 nanorod array as the photocatalyst for efficient photoelectrochemical water oxidation, RSC Adv. 7 (2017) 7547–7554.
[60] K.J.McDonald, K.S.Choi, A new electrochemical synthesis route for a BiOI electrode and its conversion to a highly efficient porous BiVO4 photoanode for solar water oxidation, Energy Environ. Sci. 5 (2012) 8553–8557.
[61] C.W.Kim, Y.S.Son, M.J.Kang, D.Y.Kim, Y.S.Kang, (040)-Crystal Facet Engineering of BiVO4 Plate Photoanodes for Solar Fuel Production, Adv. Energy Mater. 6 (2016) 1–8.
[62] J.Yang, D.Wang, X.Zhou, C.Li, A theoretical study on the mechanism of photocatalytic oxygen evolution on BiVO4 in aqueous solution, Chem. - A Eur. J. 19 (2013) 1320–1326.
[63] H.S.Han, S.Shin, D.H.Kim, I.J.Park, J.S.Kim, P.S.Huang, J.K.Lee, I.S.Cho, X.Zheng, Boosting the solar water oxidation performance of a BiVO4 photoanode by crystallographic orientation control, Energy Environ. Sci. 11 (2018) 1299–1306.
[64] T.Tachikawa, T.Ochi, Y.Kobori, Crystal-Face-Dependent Charge Dynamics on a BiVO4 Photocatalyst Revealed by Single-Particle Spectroelectrochemistry, ACS Catal. 6 (2016) 2250–2256.
[65] L.Chen, J.Wang, D.Meng, Y.Xing, C.Wang, F.Li, Y.Wang, X.Wu, Enhanced photocatalytic activity of hierarchically structured BiVO4 oriented along {040} facets with different morphologies, Mater. Lett. 147 (2015) 1–3.
[66] D.Li, Y.Liu, W.Shi, C.Shao, S.Wang, C.Ding, T.Liu, F.Fan, J.Shi, C.Li, Crystallographic-orientation-dependent charge separation of BiVO4 for solar water oxidation, ACS Energy Lett. 4 (2019) 825–831.
[67] H.L.Tan, X.Wen, R.Amal, Y.H.Ng, BiVO4 {010} and {110} Relative Exposure Extent: Governing Factor of Surface Charge Population and Photocatalytic Activity, J. Phys. Chem. Lett. 7 (2016) 1400–1405.
[68] D.Wang, H.Jiang, X.Zong, Q.Xu, Y.Ma, G.Li, C.Li, Crystal facet dependence of water oxidation on BiVO4 sheets under visible light irradiation, Chem. - A Eur. J. 17 (2011) 1275–1282.
[69] T.G.Vo, J.M.Chiu, C.Y.Chiang, Y.Tai, Solvent-engineering assisted synthesis and characterization of BiVO4 photoanode for boosting the efficiency of photoelectrochemical water splitting, Sol. Energy Mater. Sol. Cells. 166 (2017) 212–221.
[70] Y.Huo, J.Zhang, M.Miao, Y.Jin, Solvothermal synthesis of flower-like BiOBr microspheres with highly visible-light photocatalytic performances, Appl. Catal. B Environ. 111–112 (2012) 334–341.
[71] H.Huang, Y.He, X.Du, P.K.Chu, Y.Zhang, A General and Facile Approach to Heterostructured Core/Shell BiVO4/BiOI p-n Junction: Room-Temperature in Situ Assembly and Highly Boosted Visible-Light Photocatalysis, ACS Sustain. Chem. Eng. 3 (2015) 3262–3273.
[72] M.Ge, L.Liu, W.Chen, Z.Zhou, Sunlight-driven degradation of Rhodamine B by peanut-shaped porous BiVO4 nanostructures in the H2O2-containing system, CrystEngComm. 14 (2012) 1038–1044.
[73] H.L.Tan, Understanding and Improving the Charge Kinetics of BiVO4, The University of New South Wales, 2017.
[74] X.Xiao, F.Hayashi, K.Yubuta, A.Selloni, K.Teshima, Effects of Alkali Cations and Sulfate/Chloride Anions on the Flux Growth of {001}-Faceted β-Li2TiO3 Crystals, Cryst. Growth Des. 17 (2017) 1118–1124.
[75] J.K.Cooper, S.Gul, F.M.Toma, L.Chen, Y.S.Liu, J.Guo, J.W.Ager, J.Yano, I.D.Sharp, Indirect bandgap and optical properties of monoclinic bismuth vanadate, J. Phys. Chem. C. 119 (2015) 2969–2974.
[76] A.Hankin, F.E.Bedoya-Lora, J.C.Alexander, A.Regoutz, G.H.Kelsall, Flat band potential determination: Avoiding the pitfalls, J. Mater. Chem. A. 7 (2019) 26162–26176. https://doi.org/10.1039/c9ta09569a.
[77] K.Darowicki, S.Krakowiak, P.Ślepski, Selection of measurement frequency in Mott-Schottky analysis of passive layer on nickel, Electrochim. Acta. 51 (2006) 2204–2208. https://doi.org/10.1016/j.electacta.2005.04.079.
[78] S.P.Harrington, T.M.Devine, Analysis of Electrodes Displaying Frequency Dispersion in Mott-Schottky Tests, J. Electrochem. Soc. 155 (2008) C381. https://doi.org/10.1149/1.2929819.
[79] M.D’Arienzo, M.V.Dozzi, M.Redaelli, B.DiCredico, F.Morazzoni, R.Scotti, S.Polizzi, Crystal Surfaces and Fate of Photogenerated Defects in Shape-Controlled Anatase Nanocrystals: Drawing Useful Relations to Improve the H2 Yield in Methanol Photosteam Reforming, J. Phys. Chem. C. 119 (2015) 12385–12393.
[80] A.Nadar, S.S.Gupta, Y.Kar, S.Shetty, A.P.VanBavel, D.Khushalani, Evaluating the Reactivity of BiVO4 Surfaces for Efficient Electrocatalytic H2O2 Production: A Combined Experimental and Computational Study, J. Phys. Chem. C. (2020).
[81] R.Bashiri, N.M.Mohamed, C.Fai Kait, S.Sufian, M.Khatani, Enhanced hydrogen production over incorporated Cu and Ni into titania photocatalyst in glycerol-based photoelectrochemical cell: Effect of total metal loading and calcination temperature, Int. J. Hydrogen Energy. 42 (2017) 9553–9566.
[82] L.Guo, Q.Sun, K.Marcus, Y.Hao, J.Deng, K.Bi, Y.Yang, Photocatalytic glycerol oxidation on AuxCu-CuS@TiO2 plasmonic heterostructures, J. Mater. Chem. A. 6 (2018) 22005–22012.
[83] G.Dodekatos, H.Tüysüz, Plasmonic Au/TiO2 nanostructures for glycerol oxidation, Catal. Sci. Technol. 6 (2016) 7307–7315.
[84] A.Molinari, A.Maldotti, A.Bratovcic, G.Magnacca, Photocatalytic properties of sodium decatungstate supported on sol-gel silica in the oxidation of glycerol, Catal. Today. 206 (2013) 46–52.
[85] W.Liu, G.Zhao, M.An, L.Chang, Solvothermal synthesis of nanostructured BiVO4 with highly exposed (0 1 0) facets and enhanced sunlight-driven photocatalytic properties, Appl. Surf. Sci. 357 (2015) 1053–1063.
[86] N.Goel, N.Sinha, B.Kumar, Growth and properties of sodium tetraborate decahydrate single crystals, Mater. Res. Bull. 48 (2013) 1632–1636.
[87] S.Yang, Y.Guo, X.Zhou, C.Lin, Y.Wang, W.Zhang, Enhanced photocatalytic activity for degradation of methyl orange over silica-titania, J. Nanomater. 2011 (2011).
[88] J.R.Copeland, I.A.Santillan, S.M.N.Schimming, J.L.Ewbank, C.Sievers, Surface interactions of glycerol with acidic and basic metal oxides, J. Phys. Chem. C. 117 (2013) 21413–21425.
[89] Y.Geng, P.Zhang, S.Kuang, Fabrication and enhanced visible-light photocatalytic activities of BiVO4/Bi2WO6 composites, RSC Adv. 4 (2014) 46054–46059.
[90] S.Wang, P.Chen, J.H.Yun, Y.Hu, L.Wang, An Electrochemically Treated BiVO4 Photoanode for Efficient Photoelectrochemical Water Splitting, Angew. Chemie - Int. Ed. 56 (2017) 8500–8504.
[91] S.Xie, T.Zhai, W.Li, M.Yu, C.Liang, J.Gan, X.Lu, Y.Tong, Hydrogen production from solar driven glucose oxidation over Ni(OH)2 functionalized electroreduced-TiO2 nanowire arrays, Green Chem. 15 (2013) 2434–2440.
[92] M.Ye, J.Gong, Y.Lai, C.Lin, Z.Lin, High-efficiency photoelectrocatalytic hydrogen generation enabled by palladium quantum dots-sensitized TiO2 nanotube arrays, J. Am. Chem. Soc. 134 (2012) 15720–15723.
[93] L.W.Huang, T.G.Vo, C.Y.Chiang, Converting glycerol aqueous solution to hydrogen energy and dihydroxyacetone by the BiVO4 photoelectrochemical cell, Electrochim. Acta. 322 (2019) 134725.
[94] C.Zachäus, F.F.Abdi, L.M.Peter, R.Van DeKrol, Photocurrent of BiVO4 is limited by surface recombination, not surface catalysis, Chem. Sci. 8 (2017) 3712–3719.
[95] D.K.Bediako, Y.Surendranath, D.G.Nocera, Mechanistic studies of the oxygen evolution reaction mediated by a nickel-borate thin film electrocatalyst, J. Am. Chem. Soc. 135 (2013) 3662–3674.
[96] C.F.Liu, Y.J.Lu, C.C.Hu, Effects of Anions and pH on the Stability of ZnO Nanorods for Photoelectrochemical Water Splitting, ACS Omega. 3 (2018) 3429–3439.

無法下載圖示 全文公開日期 2025/07/22 (校內網路)
全文公開日期 2025/07/22 (校外網路)
全文公開日期 2025/07/22 (國家圖書館:臺灣博碩士論文系統)
QR CODE