簡易檢索 / 詳目顯示

研究生: 陳易哲
Yi-Che Chen
論文名稱: 鈰摻雜二氧化鈦奈米顆粒之微結構與光觸媒效果之研究
Microstructure and Photocatalytic activity of Ce-doped TiO2 Nanoparticles
指導教授: 陳詩芸
Shih-Yun Chen
口試委員: 陳良益
Liang-Yih Chen
宋振銘
Jenn-MIng Song
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 79
中文關鍵詞: 二氧化鈦光觸媒
外文關鍵詞: TiO2, photocatalyst
相關次數: 點閱:225下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本實驗利用溶膠-凝膠法製備不同Ce掺雜量(0%, 1%, 3%, 5%, 7 at% )之二氧化鈦(TiO2)奈米粉末。所合成之樣品以X光繞射儀 (X-ray diffraction,XRD)、穿透式電子顯微鏡(Transmission Electron microscope,TEM) 、X光吸收光譜(X-ray Absorption Spectroscopy,XAS)、拉曼光譜 (Raman spectroscopy)進行粒徑大小、結晶結構、價態變化及結構變化之分析。透過紫外光-可見光光譜(UV–visible spectroscopy,UV-vis)及光激螢光光譜(Photoluminescence Spectrometry, PL)探討在Ce摻入後的光學性質變化。最後是將奈米粉末與10-5M的亞甲基藍(Methylene blue,MB)水溶液混合後,利用紫外光(Ultraviolet) 照射測試其光觸媒效果。XRD結果顯示,樣品皆為銳鈦礦之結構(anatase)並未產生第二相,結晶性隨著摻雜量的增加逐漸下降。XAS顯示所摻雜的Ce在TiO2內部為混價的形式,且隨著摻雜量的增加,Ti3+、Ce3+與氧空缺的數目皆增加。UV-vis的分析顯示在Ce的摻入後,吸收範圍有延伸至可見光區域,PL光譜強度隨著Ce的增加而逐漸下降,雖然光學分析結果指出摻雜Ce後吸收範圍有延伸至可見光區域,並延緩電子-電洞對複合,但實際量測得到的光觸媒效果沒有提升,推測可能過多的Ce4+ 離子增進了電子-電洞的複合。


In this study, TiO2 nanoparticles doping with different amount of Ce (0%, 1%, 3%, 5%, 7 at%) were synthesized by sol-gel method. X-ray diffraction (XRD), Transmission electron microscope (TEM), X-ray absorption spectroscopy (XAS) and Raman spectroscopy were utilized to characterize the particle size, crystal structure, valence and electronic structure. UV–visible spectroscopy (UV-vis) and Photoluminescence Spectrometry (PL) were used to investigate the change of optical properties after Ce doping. The photocatalytic activity of the samples were evaluated by the degradation of 10-5 M Methylene blue (MB) under ultraviolet irradiation. It is demonstrated that all samples are anatase TiO2 without any second phases. XAS shows that both Ce and Ti were mixed-valence in the samples. With increasing the doping level, the amount of Ce3+、Ti3+ and oxygen vacancies are increased. UV-vis result indicate that absorption range is extended to visible light region and the intensity of PL is reduced. Compared to the doped TiO2, undoped sample shows better photocatalytic activity. It may due to excess Ce4+ appeared in the samples.

中文摘要 I Abstract II 致謝 III 目 錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 文獻回顧 3 2.1 光降解基本原理 3 2.2 二氧化鈦改質相關文獻 5 2.2.1 貴重金屬摻雜 5 2.2.2 過渡金屬摻雜 6 2.2.3 非金屬摻雜 9 2.2.4 共摻雜 11 2.2.5 形成介面 12 2.3 二氧化鈦(TiO2)結構與性質 15 2.4 二氧化鈦(TiO2)之製備方法 19 第三章 實驗方法 20 3.1 實驗流程 20 3.1.1 摻雜Ce之二氧化鈦奈米粉末製備 21 3.2 X光繞射分析 22 3.3 拉曼光譜分析 24 3.4 穿透式電子顯微鏡 27 3.5 X光吸收光譜 28 3.5.1 XAS分析介紹 28 3.5.2 XAS分析量測方法 30 3.5.3 XAS原理 33 3.6紫外光/可見光吸收光譜 34 3.7光激螢光光譜 35 第四章 結果與討論 36 4.1 XRD分析 36 4.2 TEM分析 38 4.3 Raman光譜分析 39 4.4 XANES分析 41 4.4.1 Ti L-edge 41 4.4.2 O K-edge 45 4.4.3 Ce L-edge 47 4.5 UV-vis 吸收光譜分析 50 4.6 PL光譜分析 51 4.7光觸媒效果 53 4.8綜合討論 55 第五章 結論 56 5.1 微結構分析 56 4.6 光學性質分析 56 4.7光觸媒效果分析 56 第六章 參考文獻 57

[1] HONDA, A. F. K., Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37-38.
[2] Parker, J. C.; Siegel, R. W., Calibration of the Raman spectrum to the oxygen stoichiometry of nanophase TiO2. Applied Physics Letters 1990, 57 (9), 943-945.
[3] Verykios, K. E. K. a. X. E., Effects of Altervalent Cation Doping of TiO2 on Its Performance as a Photocatalyst for Water Cleavage. J. Phys. Chem. 1993, 97, 1184-1189.
[4] Wonyong Choi, A. T., and Michael R. Hoffmann, The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics. J. Phys. Chem. 1994, 98, 13669-13679.
[5] Y. Hwu, Y. D. Y., N. F. Cheng, C. Y. Tung, and H. M. Lin X-ray absorption of nanocrystal TiO2. NanoStructured Materials. 1997, 9, 355-358.
[6] Bersani, D.; Lottici, P. P.; Ding, X.-Z., Phonon confinement effects in the Raman scattering by TiO2 nanocrystals. Applied Physics Letters 1998, 72 (1), 73-75.
[7] Alexander V. Vorontsova, E. N. S., Jin Zhensheng, Influence of the form of photodeposited platinum on titania upon its photocatalytic activity in CO and acetone oxidation. Journal of Photochemistry and Photobiology A: Chemistry 1999, 125, 113-117.
[8] Shelly Burnside, J.-E. M., Keith Brooks, and Michael Gratzel, Nanocrystalline Mesoporous Strontium Titanate as Photoelectrode Material for Photosensitized Solar Devices: Increasing Photovoltage through Flatband Potential Engineering. J. Phys. Chem. B 1999, 103, 9328-9332.
[9] Iwasaki, M.; Hara, M.; Kawada, H.; Tada, H.; Ito, S., Cobalt Ion-Doped TiO(2) Photocatalyst Response to Visible Light. J Colloid Interface Sci 2000, 224 (1), 202-204.
[10] W F Zhang, Y., M S Zhang, Z Yin and Q Chen, Raman scattering study on anatase TiO2 nanocrystals. J. Phys. D: Appl. Phys. 2000.
[11] Ammar Houas, H. L., Mohamed Ksibi, Elimame Elaloui, Chantal Guillard, Jean-Marie Herrmannb,, Photocatalytic degradation pathway of methylene blue in water. Applied Catalysis B: Environmental 2001, 31, 145-157.
[12] Nilgün Özer, Optical properties and electrochromic characterization of sol-gel deposited ceria . Solar Energy Materials & Solar Cells 2001, 68, 391-400.
[13] Martin Andersson, L. O. s., Sten Ljungstrom,and Anders Palmqvist, Preparation of Nanosize Anatase and Rutile TiO2 by Hydrothermal Treatment of Microemulsions and Their Activity for Photocatalytic Wet Oxidation of Phenol. J. Phys. Chem. B 2002, 106, 10674-10679.
[14] M. Catherine Blount, J. L. F., Steady-state surface species during toluene photocatalysis. Applied Catalysis B: Environmental 2002, 39, 39-50.
[15] Chia-Szu Fang, Y.-W. C., Preparation of titania particles by thermal hydrolysis of TiCl4 in n-propanol solution. Materials Chemistry and Physics 2003, 78, 739-745.
[16] K. Nagaveni, M. S. H., and Giridhar Madras, Structure and Photocatalytic Activity of Ti1-xMxO2±δ (M= W, V, Ce, Zr, Fe, and Cu) Synthesized by Solution Combustion Method. J. Phys. Chem. B 2004, 108(52), 20204-20212.
[17] Liqiang, J.; Xiaojun, S.; Baifu, X.; Baiqi, W.; Weimin, C.; Honggang, F., The preparation and characterization of La doped TiO2 nanoparticles and their photocatalytic activity. Journal of Solid State Chemistry 2004, 177 (10), 3375-3382.
[18] Benjaram M. Reddy, A. K., and Pandian Lakshmanan, Structural Characterization of Nanosized CeO2-SiO2, CeO2-TiO2, and CeO2-ZrO2 Catalysts by XRD, Raman, and HREM Techniques. J. Phys. Chem. B 2005, 109, 3355-3363.
[19] Choi, H. C.; Jung, Y. M.; Kim, S. B., Size effects in the Raman spectra of TiO2 nanoparticles. Vibrational Spectroscopy 2005, 37 (1), 33-38.
[20] Di Li, H. H., Shunichi Hishita, and Naoki Ohashi, Visible-Light-Driven N-F-Co doped TiO2 Photocatalysts. 2. Optical Characterization, Photocatalysis, and Potential Application to Air Purification. Chem. Mater. 2005, 17, 2596-2602.
[21] Li, F. B.; Li, X. Z.; Hou, M. F.; Cheah, K. W.; Choy, W. C. H., Enhanced photocatalytic activity of Ce3+–TiO2 for 2-mercaptobenzothiazole degradation in aqueous suspension for odour control. Applied Catalysis A: General 2005, 285 (1-2), 181-189.
[22] Liu, B.; Zhao, X.; Zhang, N.; Zhao, Q.; He, X.; Feng, J., Photocatalytic mechanism of TiO2–CeO2 films prepared by magnetron sputtering under UV and visible light. Surface Science 2005, 595 (1-3), 203-211.
[23] Fan, C.; Xue, P.; Sun, Y., Preparation of Nano-TiO2 Doped with Cerium and Its Photocatalytic Activity. Journal of Rare Earths 2006, 24 (3), 309-313.
[24] Serpone, N., Is the Band Gap of Pristine TiO2 Narrowed by Anion- and Cation-Doping of Titanium Dioxide in Second-Generation Photocatalysts? J. Phys. Chem. B 2006, 110, 24287-24293.
[25] Zhou, M.; Yu, J.; Cheng, B., Effects of Fe-doping on the photocatalytic activity of mesoporous TiO2 powders prepared by an ultrasonic method. J Hazard Mater 2006, 137 (3), 1838-47.
[26] Chuang, Z. Y. a. S. S. C., Probing Methylene Blue Photocatalytic Degradation by Adsorbed Ethanol with In Situ IR. J. Phys. Chem 2007, 111, 13813-13820.
[27] Mizukoshi, Y.; Makise, Y.; Shuto, T.; Hu, J.; Tominaga, A.; Shironita, S.; Tanabe, S., Immobilization of noble metal nanoparticles on the surface of TiO2 by the sonochemical method: photocatalytic production of hydrogen from an aqueous solution of ethanol. Ultrason Sonochem 2007, 14 (3), 387-92.
[28] Fritz J. Knorr, C. C. M., and Jeanne L. McHale, Trap-State Distributions and Carrier Transport in Pure and Mixed-Phase TiO2: Influence of Contacting Solvent and Interphasial Electron Transfer. J. Phys. Chem. C 2008, 112, 12786-12794.
[29] Karatchevtseva, I.; Cassidy, D. J.; Zhang, Z.; Triani, G.; Finnie, K. S.; Cram, S. L.; Barbé, C. J.; Bartlett, J. R., Crystallization of TiO2Powders and Thin Films Prepared from Modified Titanium Alkoxide Precursors. Journal of the American Ceramic Society 2008, 91 (6), 2015-2023.
[30] Reyes-Coronado, D.; Rodriguez-Gattorno, G.; Espinosa-Pesqueira, M. E.; Cab, C.; de Coss, R.; Oskam, G., Phase-pure TiO(2) nanoparticles: anatase, brookite and rutile. Nanotechnology 2008, 19 (14), 145605.
[31] Xiao, Q.; Si, Z.; Yu, Z.; Qiu, G., Characterization and photocatalytic activity of Sm3+-doped TiO2 nanocrystalline prepared by low temperature combustion method. Journal of Alloys and Compounds 2008, 450 (1-2), 426-431.
[32] Silva, A. M. T.; Silva, C. G.; Dražić, G.; Faria, J. L., Ce-doped TiO2 for photocatalytic degradation of chlorophenol. Catalysis Today 2009, 144 (1-2), 13-18.
[33] Yang, L.; Zhang, Y.; Ruan, W.; Zhao, B.; Xu, W.; Lombardi, J. R., Improved surface-enhanced Raman scattering properties of TiO2nanoparticles by Zn dopant. Journal of Raman Spectroscopy 2009, 41, 721-726.
[34] Devi, L. G.; Kottam, N.; Murthy, B. N.; Kumar, S. G., Enhanced photocatalytic activity of transition metal ions Mn2+, Ni2+ and Zn2+ doped polycrystalline titania for the degradation of Aniline Blue under UV/solar light. Journal of Molecular Catalysis A: Chemical 2010, 328 (1-2), 44-52.
[35] Senthilnathan, J.; Philip, L., Photocatalytic degradation of lindane under UV and visible light using N-doped TiO2. Chemical Engineering Journal 2010, 161 (1-2), 83-92.
[36] Xiang, Q.; Lv, K.; Yu, J., Pivotal role of fluorine in enhanced photocatalytic activity of anatase TiO2 nanosheets with dominant (001) facets for the photocatalytic degradation of acetone in air. Applied Catalysis B: Environmental 2010, 96 (3-4), 557-564.
[37] Xie, J.; Jiang, D.; Chen, M.; Li, D.; Zhu, J.; Lü, X.; Yan, C., Preparation and characterization of monodisperse Ce-doped TiO2 microspheres with visible light photocatalytic activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2010, 372 (1-3), 107-114.
[38] Li, Y.; Ma, M.; Chen, W.; Li, L.; Zen, M., Preparation of Ag-doped TiO2 nanoparticles by a miniemulsion method and their photoactivity in visible light illuminations. Materials Chemistry and Physics 2011, 129 (1-2), 501-505.
[39] Santara, B.; Pal, B.; Giri, P. K., Signature of strong ferromagnetism and optical properties of Co doped TiO2 nanoparticles. Journal of Applied Physics 2011, 110 (11), 114322.
[40] Tang, Z.-R.; Zhang, Y.; Xu, Y.-J., A facile and high-yield approach to synthesize one-dimensional CeO2 nanotubes with well-shaped hollow interior as a photocatalyst for degradation of toxic pollutants. RSC Advances 2011, 1 (9), 1772-1777.
[41] Zhou, X.; Peng, F.; Wang, H.; Yu, H.; Yang, J., Effect of nitrogen-doping temperature on the structure and photocatalytic activity of the B,N-doped TiO2. Journal of Solid State Chemistry 2011, 184 (1), 134-140.
[42] Chen, C. H.; Shieh, J.; Hsieh, S. M.; Kuo, C. L.; Liao, H. Y., Architecture, optical absorption, and photocurrent response of oxygen-deficient mixed-phase titania nanostructures. Acta Materialia 2012, 60 (18), 6429-6439.
[43] Choudhury, B.; Borah, B.; Choudhury, A., Extending Photocatalytic Activity of TiO2 Nanoparticles to Visible Region of Illumination by Doping of Cerium. Photochemistry and Photobiology 2012, 88 (2), 257-264.
[44] Choudhury, B.; Choudhury, A., Dopant induced changes in structural and optical properties of Cr3+ doped TiO2 nanoparticles. Materials Chemistry and Physics 2012, 132 (2-3), 1112-1118.
[45] Mou Pal, U. P., Justo Miguel Gracia Y Jiménez and Felipe Pérez-Rodríguez, Effects of crystallization and dopant concentration on the emission behavior of TiO2: Eu nanophosphors. Nanoscale Research Letters 2012, 7:1.
[46] Rajendran, R. V. a. V., Synthesis and characterization of nano-TiO2 via different methods. Archives of Applied Science Research 2012, 4(2), 1183-1190.
[47] Chun-Hsien Chen, Jay Shieh, , Jing-Jong Shyue., Architecture, optical absorption, and photocurrent response of TiO2-SrTiO3and TiO2-CeO2nanostructured composites. In Fourth International Conference on Smart Materials and Nanotechnology in Engineering, 2013.
[48] Karunakaran, C.; Gomathisankar, P., Solvothermal Synthesis of CeO2–TiO2 Nanocomposite for Visible Light Photocatalytic Detoxification of Cyanide. ACS Sustainable Chemistry & Engineering 2013, 1 (12), 1555-1563.
[49] Khan, H.; Berk, D., Sol–gel synthesized vanadium doped TiO2 photocatalyst: physicochemical properties and visible light photocatalytic studies. Journal of Sol-Gel Science and Technology 2013, 68 (2), 180-192.
[50] Li, L.; Yang, Y.; Liu, X.; Fan, R.; Shi, Y.; Li, S.; Zhang, L.; Fan, X.; Tang, P.; Xu, R.; Zhang, W.; Wang, Y.; Ma, L., A direct synthesis of B-doped TiO2 and its photocatalytic performance on degradation of RhB. Applied Surface Science 2013, 265, 36-40.
[51] Muñoz-Batista, M. J.; Gómez-Cerezo, M. N.; Kubacka, A.; Tudela, D.; Fernández-García, M., Role of Interface Contact in CeO2–TiO2 Photocatalytic Composite Materials. ACS Catalysis 2013, 4 (1), 63-72.
[52] Tian, J.; Sang, Y.; Zhao, Z.; Zhou, W.; Wang, D.; Kang, X.; Liu, H.; Wang, J.; Chen, S.; Cai, H.; Huang, H., Enhanced photocatalytic performances of CeO2/TiO2 nanobelt heterostructures. Small 2013, 9 (22), 3864-72.
[53] Tripathi, A. K.; Singh, M. K.; Mathpal, M. C.; Mishra, S. K.; Agarwal, A., Study of structural transformation in TiO2 nanoparticles and its optical properties. Journal of Alloys and Compounds 2013, 549, 114-120.
[54] Choudhury, B.; Verma, R.; Choudhury, A., Oxygen defect assisted paramagnetic to ferromagnetic conversion in Fe doped TiO2nanoparticles. RSC Advances 2014, 4 (55), 29314.
[55] Nasir, M.; Bagwasi, S.; Jiao, Y.; Chen, F.; Tian, B.; Zhang, J., Characterization and activity of the Ce and N co-doped TiO 2 prepared through hydrothermal method. Chemical Engineering Journal 2014, 236, 388-397.
[56] Tian, M.; Wang, H.; Sun, D.; Peng, W.; Tao, W., Visible light driven nanocrystal anatase TiO2 doped by Ce from sol–gel method and its photoelectrochemical water splitting properties. International Journal of Hydrogen Energy 2014, 39 (25), 13448-13453.
[57] Wang, B.; Lu, X.-Y.; Xuan, J.; Leung, M. K. H., Facile synthesis and photocatalytic disinfection of boron self-doped TiO2 nanosheets. Materials Letters 2014, 115, 57-59.
[58] You, Y. F.; Xu, C. H.; Xu, S. S.; Cao, S.; Wang, J. P.; Huang, Y. B.; Shi, S. Q., Structural characterization and optical property of TiO2 powders prepared by the sol–gel method. Ceramics International 2014, 40 (6), 8659-8666.
[59] Zhang, W.; Li, X.; Jia, G.; Gao, Y.; Wang, H.; Cao, Z.; Li, C.; Liu, J., Preparation, characterization, and photocatalytic activity of boron and lanthanum co-doped TiO2. Catalysis Communications 2014, 45, 144-147.
[60] Momeni, M. M.; Ghayeb, Y., Fabrication, characterization and photoelectrochemical behavior of Fe–TiO2 nanotubes composite photoanodes for solar water splitting. Journal of Electroanalytical Chemistry 2015, 751, 43-48.
[61] Nishanthi, S. T.; Subramanian, E.; Sundarakannan, B.; Padiyan, D. P., An insight into the influence of morphology on the photoelectrochemical activity of TiO 2 nanotube arrays. Solar Energy Materials and Solar Cells 2015, 132, 204-209.
[62] Tripathi, A. K.; Mathpal, M. C.; Kumar, P.; Singh, M. K.; Soler, M. A. G.; Agarwal, A., Structural, optical and photoconductivity of Sn and Mn doped TiO2 nanoparticles. Journal of Alloys and Compounds 2015, 622, 37-47.
[63] Jia, J.; Yamamoto, H.; Okajima, T.; Shigesato, Y., On the Crystal Structural Control of Sputtered TiO2 Thin Films. Nanoscale Research Letters 2016, 11 (1), 324.
[64] Lu, X.; Li, X.; Qian, J.; Miao, N.; Yao, C.; Chen, Z., Synthesis and characterization of CeO 2 /TiO 2 nanotube arrays and enhanced photocatalytic oxidative desulfurization performance. Journal of Alloys and Compounds 2016, 661, 363-371.
[65] Cai, J.; Wu, X.; Li, S.; Zheng, F., Controllable location of Au nanoparticles as cocatalyst onto TiO2@CeO2 nanocomposite hollow spheres for enhancing photocatalytic activity. Applied Catalysis B: Environmental 2017, 201, 12-21.
[66] Dhanalakshmi, J.; Iyyapushpam, S.; Nishanthi, S. T.; Malligavathy, M.; Pathinettam Padiyan, D., Investigation of oxygen vacancies in Ce coupled TiO2 nanocomposites by Raman and PL spectra. Advances in Natural Sciences: Nanoscience and Nanotechnology 2017, 8 (1).
[67] Chi-Liang Chen and Chung-Li Dong, Characterization of the Electronic Structure of Spinel Superconductor LiTi2O4 using Synchrotron X-ray Spectroscopy 2017.
[68] Hu, J.; Tu, J.; Li, X.; Wang, Z.; Li, Y.; Li, Q.; Wang, F., Enhanced UV-Visible Light Photocatalytic Activity by Constructing Appropriate Heterostructures between Mesopore TiO2 Nanospheres and Sn3O4 Nanoparticles. Nanomaterials 2017, 7 (10), 336.
[69] Kohantorabi, M.; Gholami, M. R., Kinetic Analysis of the Reduction of 4-Nitrophenol Catalyzed by CeO2 Nanorods-Supported CuNi Nanoparticles. Industrial & Engineering Chemistry Research 2017, 56 (5), 1159-1167.
[70] Li, J.; Liu, J.; Sun, Q.; Banis, M. N.; Sun, X.; Sham, T.-K., Tracking the Effect of Sodium Insertion/Extraction in Amorphous and Anatase TiO2 Nanotubes. The Journal of Physical Chemistry C 2017, 121 (21), 11773-11782.
[71] Schindler, B.; Barnes, L.; Renois, G.; Gray, C.; Chambert, S.; Fort, S.; Flitsch, S.; Loison, C.; Allouche, A. R.; Compagnon, I., Anomeric memory of the glycosidic bond upon fragmentation and its consequences for carbohydrate sequencing. Nat Commun 2017, 8 (1), 973.
[72] Shih, S.-J.; Hong, B.-J.; Lin, Y.-C., Novel graphene oxide-containing antibacterial mesoporous bioactive glass. Ceramics International 2017, 43, S784-S788.
[73] Wu, H.; Wang, H.; Li, G., Metal oxide semiconductor SERS-active substrates by defect engineering. The Analyst 2017, 142 (2), 326-335.
[74] Hanaor, D. A. H.; Sorrell, C. C., Review of the anatase to rutile phase transformation. Journal of Materials Science 2010, 46 (4), 855-874.
[75] M. K. Nowotny, L. R. S., T. Bak, and J. Nowotny, Defect Chemistry of Titanium Dioxide. Application of Defect Engineering in Processing of TiO2-Based Photocatalysts. J. Phys. Chem. C 2008, 112, 5275-5300.
[76] D. C. Koningsberger and R. Prins, X-Ray Absorption : Principles, Application, Techniques of EXAFS,SEXAFS, SEXAFS and XANES, Chem. Analysis, 1988, Vol. 92
[77] D. E. Sayers Sayers Sayers , E. A. Stern Stern, and F. W, New Technique for Investigating Noncrystalline Structures: Fourier Analysis of the Extended X-Ray—Absorption Fine Structure. Physical Review Letter, 1971, 27, 1204
[78] B. K. Teo, "EXAFS , Basic Principle and Data Analysis," Springer-Verlag, Berlin, 1986.
[79] 李維烈, 二氧化鈰奈米顆粒之缺陷結構與室溫鐵磁特性關連性研究, 國立台灣科技大學材料科學與工程系研究所, 博士論文, 2017
[80] 陳品瑜, 以化學還原法合成Ag@TiO2 核殼結構奈米顆粒及其結構之研究, 國立台灣科技大學材料科學與工程系研究所, 碩士論文, 2016

無法下載圖示 全文公開日期 2023/08/06 (校內網路)
全文公開日期 2028/08/06 (校外網路)
全文公開日期 2028/08/06 (國家圖書館:臺灣博碩士論文系統)
QR CODE