簡易檢索 / 詳目顯示

研究生: 張冠翔
Kuan-Hsiang Chang
論文名稱: 小圓柱尾流衝擊平板時的流場特徵與氣動力性能
Flow Characteristics and Aerodynamic Performance of a Flat Plate Impinged by Wake of a Small-diameter Circular Cylinder
指導教授: 黃榮芳
Rong-Fung Huang
口試委員: 許清閔
Ching-Min Hsu
林怡均
Yi-Jiun Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 185
中文關鍵詞: 小圓柱尾流平板流場控制
外文關鍵詞: small-diameter circular cylinder, wake, flat plate, flow control
相關次數: 點閱:330下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究藉由實驗方法,研究小圓柱尾流衝擊平板時,對平板迎風面之流場與氣動力性能的影響。藉由雷射光頁輔助煙霧可視化技術,觀察小圓柱尾流流場特徵及平板表面受小圓柱尾流衝擊時之流場特徵。以熱線風速儀偵測小圓柱尾流區域的渦漩逸放特性與速度分佈以及平板受小圓柱尾流衝擊時接近表面附近的速度分佈。使用質點影像速度儀(PIV),量取平板受小圓柱尾流衝擊表面上游之速度場,得到量化的流場結構。使用壓力掃描技術量測平板表面的壓力分佈,探討小圓柱對平板表面壓力分布的影響。針對不同雷諾數,在小圓柱尺寸與平板寬度的域面上,紀錄平板上游的流場特徵行為。分析流場可視化、熱線風速儀偵測、迎風面壓力量測及量化速度場的結果顯示:流場行為可劃分為穩態域(stable regime)與非穩態域(unstable regime)兩種特徵模態。穩態域中的流場特徵為小圓柱的尾流會在接近平板表面的上游區引致一些特徵流場結構,可分成三個子模態:在低雷諾數區形成兩個轉向相反且近似對稱的迴流;在中雷諾數區形成一蕈狀渦漩結構;在高雷諾數區,蕈狀渦漩結構上游另呈現一至三個小渦漩結構。在非穩態域中的流場特徵,平板表面的蕈狀渦漩結構不會穩定存在在平板上方,而是呈現不規則的逸放行為。在穩態域中,由於接近表面上游區的蕈狀渦漩結構的生成,避免橫風直接衝擊平板表面,因此降低平板上方的壓力係數值約5.2%。


The characteristics of flow characteristics and aerodynamic performance of a flat plate impinged by the wake of a small-diameter circular cylinder were experimentally studied in a wind tunnel. The aims were focused on improving the flow behavior and aerodynamic performance of the flat plate. The effects of varying the dimensions of a small-diameter circular cylinder on the flow characteristics upstream the flat plate were observed by laser-assisted smoke flow visualization technique. A one-component hot-wire anemometer was used to detect the instantaneous velocities in the wake of the small-diameter circular cylinder. The distributions of surface pressure coefficient of the flat plate were measured by using a home-made linear pressure scanner. The pressure coefficients were subsequently calculated by dividing the measured surface pressure by the dynamic pressure of freestream. The velocity fields upstream the flat plate were quantified by employing the Particle image velocimetry (PIV). The streamline patterns and turbulence properties of various characteristic flow models were presented. The characteristic flow regimes were identified in the domain of the nondimensional diameter of small circular cylinder and the nondimensional width of flat plate. The flow visualization results showed two characteristic flow regimes (stable and unstable) identified in the domain of small circular cylinder diameter and the flat plate width. By cross referencing and analyzing the results of flow visualization, hot-wire anemometer detection, surface pressure measurement, and PIV measurement, the effects of the small-diameter circular cylinder on the characteristics of flow behavior and aerodynamic performance of the flat plate was unveiled and discussed.

摘要 i Abstract ii 誌謝 iii 目錄 iv 符號索引 vii 圖表索引 ix 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.2.1 流動控制 2 1.2.2 流體流經圓柱的流場特性 4 1.2.3 平板之流場特性 5 1.3 研究目標 6 第二章 實驗設備、儀器與方法 7 2.1 研究構思 7 2.2 實驗設備 8 2.2.1 風洞 8 2.2.2 平板模型 9 2.2.3 小圓柱的種類 10 2.3 實驗儀器與方法 11 2.3.1 自由流速的偵測 11 2.3.2 煙霧流場可視化 11 2.3.3 時序速度訊號的偵測 14 2.3.4 質點影像速度儀(Particle Image Velocimetry, PIV) 14 2.3.5 壓力掃描器(linear pressure scanner) 19 第三章 小圓柱尾流流場特徵 20 3.1 小圓柱尾流區流場特徵 20 3.2 小圓柱尾流區速度分佈 21 第四章 平板上游流場特徵 23 4.1 垂直面流場特徵 23 4.2 水平面流場特徵 28 4.3 流場特徵模態分區 41 4.4 蕈狀渦漩結構之特徵尺度 42 4.5 速度分佈特性 42 第五章 平板上游流場量化分析 44 5.1 特徵模態之速度向量流線圖 44 5.2 特徵模態之速度分佈與紊流強度分佈 45 5.3 特徵模態之渦度分佈 51 第六章 平板的氣動力性能 54 6.1 平板的迎風面壓力係數分佈 54 6.2 平板迎風面平均壓力 55 第七章 結論與建議 56 7.1 結論 56 7.2 建議 57 參考文獻 58

[1]Nakayama, Y. and Boucher, R. F., Introduction to Fluid Mechanics, Arnold, Great Britain, 1999.
[2]Prandtl, L., “Über Flüssigkeitsbewegung bei sehr kleiner Reibung,” Proc. Third Int. Math. Congr., Heidelberg, Germany, 1904, pp. 484-491.
[3]In, K. M., Choi, D. H., and Kim, M. U., “Two-dimensional viscous flow past a flat plate,” Fluid Dynamics Research, Vol. 15, No. 1, 1995, pp. 13-24.
[4]Dennis, S. C. R., Qiang, W., Coutanceau, M., and Launay, J. L., “Viscous flow normal to a flat plate at moderate Reynolds numbers,” Journal of Fluid Mechanics, Vol. 248, Mar. 1993, pp. 605-635.
[5]Nakamura, Y., “Vortex shedding from bluff bodies and a universal strouhal number,” Journal of Fluids and Structures, Vol. 10, No. 2, 1996, pp. 159-171.
[6]Schewe, G., “Reynolds-number effects in flow around more-or-less bluff bodies,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 89, No. 14-15, 2001, pp. 1267-1289.
[7]Bearman, P. W. and Harvey, J. K., “Control of circular cylinder flow by the use of dimples,” AIAA Journal, Vol. 31, No. 10,1993, pp.1753-1756.
[8]Fiedler, H. E., “Control of free turbulent shear flows,” Flow Control-Fundamentals and Practices, edited by M. Gad-el-Hak, A. Pollard, and J. P. Bonnet, Springer-Verlag, Berlin, 1998, p.335-429.
[9]Gad-el-Hak, M., Flow Control-Passive, Active, and Reactive Flow Management, Cambridge University Press, New York, 2000.
[10]Ghee, T. A. and Leishman, J. G., “Unsteady circulation control aerodynamics of a circular cylinder with periodic jet blowing,” AIAA Journal, Vol. 30, No. 2, 1992, pp. 289-299.
[11]Strykowski, P. J. and Sreenivasan, K. R., “On the formation and suppression of vortex shedding at low Reynolds numbers,” Journal of Fluid Mechanics, Vol. 218, Sep. 1990, pp. 71-107.
[12]Wang, A. -B. and Chang, Y. -C., “Experimental investigation of suppression of vortex shedding from a circular cylinder,” Transactions of the Aeronautical and Astronautical Society of the Republic of China, Vol. 28, 1996, pp. 249-254.
[13]Sakamoto, H., Tan, K., and Haniu, H., “An optimum suppression of fluid forces by controlling a shear layer separated from a square Prism,” Journal of Fluids Engineering, Vol. 113, No. 2, 1991, pp. 183-189.
[14]Sakamoto, H. and Haniu, H., “Optimum suppression of fluid forces acting on a circular cylinder,” Journal of Fluids Engineering, Vol. 116, No. 2, 1994, pp. 221-227.
[15]Prasad, A. and Williamson, C. H. K., “A method for the reduction of bluff body drag,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 69-71, Jul-Oct 1997, pp. 155-167.
[16]Tsutsui, T. and Igarashi, T., “Drag reduction of a circular cylinder in an air-stream,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 90, No. 4-5, 2002, pp. 527-541.
[17]Bouak, F. and Lemay, J., “Passive control of the aerodynamic forces acting on a circular cylinder,” Experimental Thermal and Fluid Science, Vol. 16, No. 1-2, 1998, pp. 112-121.
[18]Lienhard, J. H., Synopsis of lift, drag and vortex frequency data for rigid circular cylinders, Research Division Bulletion 300, Washington State University, 1966.
[19]Huang, R. F., Chen, J. M., and Hsu C. M., “Modulation of surface flow and vortex shedding of a circular cylinder in the subcritical regime by self-excited vibration rod,” Journal of Fluid Mechanics, Vol. 555, May 2006, pp. 321-352.
[20]Zdravkovich, M. M., “Different modes of vortex shedding: an overview,” Journal of Fluids and Structures, Vol. 10, No. 5, 1996, pp. 427-437.
[21]Roshko, A, “On the wake and drag of bluff bodies,” Journal of Aeronautical Sciences, Vol. 22, No. 2, 1955, pp. 124-132.
[22]Tritton, D. J., “Experiments on the flow past a circular cylinder at low reynolds numbers,” Journal of Fluid Mechanics, Vol. 6, No. 4, 1959, pp. 547-567.
[23]Etkin, B., Kovbaoher, G. K., and Keefe, R. T., “Acoustic radiation froma stationary cylinder in fluid stream (aeolian tones),” The Journal of the Acoustical Society of America, Vol. 29, No. 1, 1957, pp. 30-36.
[24]Weaver, W., “Wind-induced vibrations in antenna members,” Journal of the Engineering Mechanics Division, ASCE, Vol. 87, No. 1, 1961, pp. 141-165.
[25]Gerrard, J. H., “An experimental investigation of the oscillating lift and drag of a circular cylinder shedding turbulent vortices,” Journal of Fluid Mechanics, Vol. 11, No. 2, 1961, pp. 244-256.
[26]Roshko, A., On the Development of Turbulent Wakes from Vortex Streets, NACA TN 2913, 1954.
[27]In, K. M., Choi, D. H., and Kim, M. U., “Two-dimensional viscous flow past a flat plate,” Fluid Dynamics Research, Vol. 15, No. 1, 1995, pp. 13-24.
[28]Dennis, S. C. R., Qiang, W., Coutanceau, M., and Launay, J. L., “Viscous flow normal to a flat plate at moderate reynolds numbers,” Journal of Fluid Mechaics, Vol. 248, Mar 1993, pp. 605-635.
[29]Nakamura, Y., “Vortex shedding from bluff bodies and a universal strouhal number,” Journal of Fluids and Structures, Vol. 10, No. 2,1996, pp. 159-171.
[30]Sichlichting, H. Boundary layer theory, 7th ed, Mcgraw-Hill, New York, 1993, p. 699.
[31]Flagan, R. C. and Seinfeld J. H., Fundamentals of air pollution engineering, Prentice Hall, Englewood Cliffs, New Jersey, 1988, p.295-307.
[32]Chen, J. M. and Liu, C. H., “Vortex shedding and surface pressures on a square cylinder at incidence to a uniform air stream,” International Journal of Heat and Fluid Flow, Vol. 20, No. 6, 1999, pp 592-597.
[33]Lee, B. E., “The effect of turbulence on the surface pressure field of a square prism,” Journal of Fluid Mechanics, Vol. 69, No. 2, 1975, pp. 263-282.
[34]Sarioglu, M., Akansu, Y. E. and Yavuz, T., “Control of flow around square cylinders at incidence by using rod,” AIAA Journal, Vol. 43, No. 7, July 2005, pp. 1419-1426.
[35]Igarashi, T., Nobuaki, T., “Drag reduction of flat plate normal to airstream by flow control using a rod,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 90, No. 4-5, 2002, pp. 359-376.

無法下載圖示 全文公開日期 2022/06/20 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE