簡易檢索 / 詳目顯示

研究生: 詹雅涵
YA-HAN ZHAN
論文名稱: 最佳化螺絲頭凹槽設計預防骨螺絲滑牙之探討
Optimal Socket Design To Prevent Screw Head Stripping
指導教授: 趙振綱
Ching-Kong Chao
口試委員: 徐慶琪
Ching-Chi Hsu
林晉
Jinn Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 75
中文關鍵詞: 鎖定式骨板螺絲頭六角形滑牙扭力有限元素分析生物力學
外文關鍵詞: locking plate, screw head, hexagonal, stripping, torque, finite element analysis, biomechanical tests.
相關次數: 點閱:296下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

鎖定式骨板(Locking plate)目前被廣泛地運用於治療身體各部位骨折,原因是鎖定式骨板多了鎖定式系統,可增強骨板結構與增加穩定度。然而,在鎖入及拔除螺絲的時候,螺絲頭滑牙(Slippage of screw head)的情形卻經常發生,此會造成無法轉動螺絲。滑牙(Slippage)的發生主要是因為螺絲與骨頭間咬合太緊固,使用者沒有正確的傳遞扭力,此種現象經常出現在小尺寸的六角形(Hexagonal)鈦合金(Titanium Alloy)螺絲身上,目前還沒有任何研究針對不同螺絲頭的設計進行完整比較。因此本研究目的為探討最佳化的螺絲頭設計以預防滑牙的發生。
本研究設計出四種不同的螺絲頭形狀,分別為六角形、星形(Torx)、十字(Cross)以及鐵十字形(Iron-cross),且對此四種螺絲頭進行有限元素法分析(Finite Element Method)及生物力學測試,以驗證數值與實驗結果是否一致,評估方式為比較螺絲頭在去除同樣面積及體積的條件下,哪種螺絲頭形狀可產生較大的扭力,以避免螺絲頭滑牙的現象產生,此外並模擬螺絲起子沒有準確插入螺絲頭時,其中鎖緊及拔除動作之扭力結果,針對容易產生滑牙的螺絲頭凹槽設計進行最佳化的改良設計。本實驗所選用的螺絲頭材料為鈦合金,螺絲起子材料則是選用淬火後的SUS420不銹鋼。由於螺絲滑牙大部分是由於螺絲頭與螺絲起子產生的最大扭力小於骨頭與骨螺絲之咬合強度所造成,因此本研究均使用扭力測試進行不同設計之評估。
本研究結果發現,四種小尺寸形狀在轉到0.1度時,可以發現六角形可以產生最大的扭力,當螺絲起子與螺絲頭完全密合時,四種形狀螺絲起子會變形斷裂,而在螺絲起子與螺絲頭無完全密合時,六角形會發生滑牙的現象,當螺絲起子的面積擴大時,可以產生更高的扭力,也使得螺絲起子不斷裂,增強螺絲起子的強度。
六角形螺絲頭雖然可以產生較高的扭力,但是在尺寸小的時候,由於形狀太接近圓,使得螺絲起子在長期使用下易產生磨損,達成力的傳遞較不容易,另外亦可能因為施力過大導致螺絲起子插不準確造成滑牙。另外從有限元素的分析中,設計形狀的角數量越少,可以增加滑牙所需去除的體積,減少滑牙發生,但有限元素分析中,無法模擬滑牙情形,只能以實驗進行確認。未來可以繼續探討新形狀以減少及預防滑牙的產生。


Locking plates have widely been used to treat different kinds of fractures in the body during surgical operation, for it can strengthen the bone-plate structures to make the fixation more rigid. However, the screw head slippage happened frequently during insertion and removal of the screws. Slippage may occur when the screws are well bonded with the bone. Slippage occurs when a screw cannot be driven since the user’s power or torque is not transmitted properly and is commonly seen in small size hexagonal screws made of titanium. There have been no studies with comparisons of different kinds of screw head designs on the slippage of screw head. Therefore, the purpose of this study is to optimal socket design to prevent screw head stripping.
In this study, four types of screw head designs were investigated, including Hexagonal, Torx, Cross, Iron Cross using Finite Element Method (FEM) and Biomechanical experimental testing to validate the results in order to evaluate which type of screw head produces better torque to avoid screw slippage under the condition of cutting the same area and volume. Moreover, what kind of screw head design may have a greater torque to avoid screw head stripping. We simulation in incomplete engagement screw driver during the insertion and removal of screw was also observed. In this study, Titanium and SUS420 stainless steel were utilized in the manufacturing of screw head and screw driver, and torques of each designs were measured and calculated after torsion tests were applied to all specimens.
The result of FEM reveals that Hexagonal screw head has the best performance at the screw driver rotated 0.1 degrees to the screw head, In small screw, the mechanical testing shows that Hexagonal has the best performance. In well engaged conditions, hexagonal screws had the highest torque. All the drivers warped and broken at the end of testing. In the mathematical simulations, the driver with the structure as close as round shape could achieve higher torque. In incomplete engagement, hexagonal screws stripped with more decrease of the torque. Torx and Cross screws warped only with less decrease of torque. When the screwdriver area expansion, we can obtain greater torque and don’t make driver broken.
Although Hexagonal screw head can produce highest torque among all the other, its shape approaches to circle as the screw size gets smaller. Having screw driver being used for a couple of period, wear and tear could cause inefficient force transmission, which eventually bring about slippage easier in incomplete engagement. There are difficulties simulating the slippage of screw head with FEM, and can only be determined by experiment. In the future, this study could be extended to design new socket reduction and avoiding slippage of screw head.

目錄 中文摘要 III ABSTRACT IV 誌謝 V 目錄 VI 圖索引 VI 表索引 XI 第一章緒論 1 1.1研究背景、動機與目的 1 1.2 鎖定式骨板系統簡介 2 1.3文獻回顧 3 1.3.1臨床案利回顧 3 1.3.2材料背景回顧 5 1.3.3有限元素分析回顧 7 1.3.4生物力學測試回顧 9 第二章材料與方法 15 2.1模形結構建立 17 2.2有限元素分析 21 2.2.1小面積螺絲頭設計比較 21 2.3.2最佳化設計 23 2.3生物力學測試 27 第三章結果 40 3.1有限元素法結果 40 3.1.1收斂度分析 40 3.1.2四種螺絲頭模型結果 42 3.1.3最佳化設計結果 43 3.2生物力學測試 46 第四章討論 64 4.1骨螺絲設計形狀 64 4.2最佳化設計有限元素分析與生物力學測試 66 4.3研究限制 71 第五章結論與未來展望 72 5.1結論 72 5.2未來展望 73 參考文獻 74

[1] J. H. Bae, J. K. Oh, C. W. Oh, and C. R. Hur, "Technical difficulties of removal of locking screw after locking compression plating," Arch Orthop Trauma Surg, vol. 129, pp. 91-5, Jan 2009.
[2] T. Suzuki, W. R. Smith, P. F. Stahel, S. J. Morgan, A. J. Baron, and D. J. Hak, "Technical Problems and Complications in the Removal of the Less Invasive Stabilization System," Journal of Orthopaedic Trauma, vol. 24, pp. 369-373, Jun 2010.
[3] T. Maehara, S. Moritani, H. Ikuma, K. Shinohara, and Y. Yokoyama, "Difficulties in removal of the titanium locking plate in Japan," Injury, vol. 44, pp. 1122-6, Aug 2013.
[4] A. Ansari and R. Twyman, "Removal of screws with damaged heads—A technical tip," Injury Extra, vol. 39, pp. 345-346, 2008.
[5] S. J. Kim and M. U. Kim, "A Simple Technique for Removing a Locking Compression Plate With a Stripped Locking Screw," Journal of Orthopaedic Trauma, vol. 26, pp. E51-E53, Jun 2012.
[6] S. Raja, A. M. Imbuldeniya, S. Garg, and G. Groom, "Difficulties encountered removing locked plates," Ann R Coll Surg Engl, vol. 94, pp. 502-5, Oct 2012.
[7] J. J. Kim, J. W. Kim, H. S. Yu, H. S. Lee, and H. K. Oh, "Factors affecting accurate drill sleeve insertion in locking compression plates," Orthop Traumatol Surg Res, vol. 99, pp. 823-7, Nov 2013.
[8] N. Schwarz, S. Euler, M. Schlittler, T. Ulbing, P. Wilhelm, G. Fronhöfer, et al., "Technical complications during removal of locking screws from locking compression plates: a prospective multicenter study," European Journal of Trauma and Emergency Surgery, vol. 39, pp. 339-344, 2013.
[9] J. S. Hayes and R. G. Richards, "The use of titanium and stainless steel in fracture fixation," Expert Review of Medical Devices, vol. 7, pp. 843-853, Nov 2010.
[10] C. Y. Chien, W. H. Chuang, W. C. Tsai, S. C. Lin, Y. P. Luh, and Y. J. Chen, "A Finite Element Study about CAM-Out Failure of the Recess-Screwdriver Interfaces for the Cold-Welded Periarticular Fixation," Journal of Mechanics, vol. 29, pp. N1-N7, 2012.
[11] J. K. Behring, N. R. Gjerdet, and A. Molster, "Slippage between screwdriver and bone screw," Clinical Orthopaedics and Related Research, pp. 368-372, Nov 2002.
[12] K. R. Spencer, J. W. Ferguson, A. C. Smith, and J. E. A. Palamara, "Screw head design: an experimental study to assess the influence of design on performance," Journal of Oral and Maxillofacial Surgery, vol. 62, pp. 473-478, 2004.
[13] S. A. Klein, N. A. Kenney, J. A. Nyland, and D. Seligson, "Evaluation of cruciate and slot auxiliary screw head design modifications for extracting stripped screw heads," Acta Orthopaedica Belgica, vol. 73, pp. 772-777, Dec 2007.
[14] D. S. Jun, H. Kou, Y. C. Kim, C.-S. Jun, and S. C. Lee, "Evaluation of a cloverleaf screw head to minimize the slippage of medical screws," International Journal of Precision Engineering and Manufacturing, vol. 12, pp. 703-709, 2011.
[15] AO Foundation images.
[16] Torx Plus Driver System

QR CODE