簡易檢索 / 詳目顯示

研究生: 葉芳廷
Fang-ting Yeh
論文名稱: 使用賽局理論在多重使用者正交分頻多工合作式網路之中聯合功率與子通道分配及子載波配對
Game theory for power and subchannel allocation with subcarrier pairing in multiuser OFDM relay networks
指導教授: 方文賢
Wen-hsien Fang
口試委員: 丘建青
none
賴坤財
none
林士駿
none
陳郁堂
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 44
中文關鍵詞: 合作式通訊賽局理論奈許談判解功率分配子通道分配子載波配對多重使用者
外文關鍵詞: cooperative communications, game theory, Nash bargaining solution, power allocation, subchannel allocation, subcarrier pairing, multi-user communications
相關次數: 點閱:218下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

正交分頻多工是現今一種相當有潛力的無線網路傳輸技術, 搭配合作式網路能
藉由使用者之間互相協助傳遞訊息至目的端來形成一個分散式天線陣列, 進而
提供空間分集增益。

賽局理論是一套有系統的策略分析工具, 本來是在應用在經濟學中, 它讓每一
位參賽者或參賽團體根據不同的考量因素選擇對自己最有利的策略, 而近年來
在各領域中越來越受重視與應用。

在本論文中, 我們考慮正交分頻多工合作式網路系統中的資源分配問題。在
系統模型裡, 與以往不同的是我們讓一個來源端可以使用多個子通道來
傳遞訊息, 透過這個方法使得每一個來源端可以獲得更高的速率及更低的位
元錯誤率。此最佳化問題包含了功率分配、子通道分配及子載波配對。

由於我們是在一個合作式網路系統下, 所以我們利用賽局理論中的奈許談判解來當
我們的目標式, 用其解決我們資源分配的問題。 我們為了降低計算量也提出了次佳解, 它
簡化了奈許談判解的目標式, 並用注水法來分配功率問題。奈許談判解和以往不
同的是它考慮到了參賽者的資源分配之公平性, 並且最後我們經由演算法達到
最佳化的解。

相對之前的方法, 我們使用的奈許談判解是未經簡化過的目標式且提出的演算法
是藉由迭代運算來找到最適當的功率分配、子通道分配及子載波配對, 所以我
們的得到的會是最佳解, 比前人的次佳解能得到更高的速率及更公平的分配資
源給每一位來源端。


Orthogonal frequency division multiplexing (OFDM) is a promising wireless communication transmission technology; whereas, cooperative networks can provide spatial diversity gain by a distributed antenna array between the user and the destination. In this thesis, we consider a resource allocation problem, including power and subchannel allocation, and subcarrier pairing, in OFDM cooperative networks, in which user passes message through a set of subchannels, so that it can get lower bit error rate and attain higher transmission data rate.

Game theory, originated in the economics, is a systematic strategic analysis tool, which allows each contestants or participating groups to choose their own strategies depending on the most favorable considerations. Recently, it has received a vast amount of attentions for its potential applications in various disciplines of applications. In this work, we use the Nash bargaining solution (NBS) in game theory as our objective function and use it to solve the resource allocation problem considered. Furthermore, to alleviate the computational load, we also consider a suboptimal solution, which simplifies the NBS objective function, and use water filling to allocate the power. Compared to previous works, our NBS solution can attain higher transmission by joint and fair consideration of power and subchannel allocation with subcarrier pairing. The suboptimal solution exhibits slight performance loss with great mitigation of computational complexity.

第一章緒論1 1.1 引言 . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 研究動機與目的 . . . . . . . . . . . . . . . . . . . . . 2 1.3 內容章節概述 . . . . . . . . . . . . . . . . . . . . . . 3 第二章相關背景回顧3 2.1 合作式通訊網路 . . . . . . . . . . . . . . . . . . . . . 4 2.1.1 子載波配對. . . . . . . . . . . . . . . . . . . 7 2.1.2 子通道分配. . . . . . . . . . . . . . . . . . . 8 2.2 賽局理論. . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 各式數學規劃介紹 . . . . . . . . . . . . . . . . . . . 11 2.3.1 凸函數最佳化. . . . . . . . . . . . . . . . . . 11 2.3.2 對偶分解. . . . . . . . . . . . . . . . . . . . 13 2.3.3 注水法. . . . . . . . . . . . . . . . . . . . . . 14 2.4 結語 . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 第三章使用奈許談判解做功率與子通道分配及子載波配對15 3.1 介紹 . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2 問題陳述 . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3 與之前所提出的問題比較 . . . . . . . . . . . . . . . 21 3.4 對偶問題 . . . . . . . . . . . . . . . . . . . . . . . . 24 3.5 本論文所提出的奈許談判解演算法. . . . . . . . . . . 26 3.6 電腦模擬結果與討論. . . . . . . . . . . . . . . . . . 31 3.7 結語 . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 第四章結論及未來展望36 4.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.2 未來展望. . . . . . . . . . . . . . . . . . . . . . . . 40

[1] Q. Huang, Game Theory. Sciyo, 2010.
[2] C.-N. Hsu, H.-J. Su, and P.-H. Lin, “Joint subcarrier pairing and power allocation
for OFDM transmission with decode-and-forward relaying,” IEEE
Trans. Signal Proc., Vol. 59, No. 1, pp. 399-414, Jan. 2011.
[3] Z. Han, Z. Ji, and K. J. R. Liu, “Fair multiuser channel allocation for OFDMA
networks using Nash bargaining solutions and coalitions,” IEEE Trans. on
Commun.,Vol. 53, No. 8, pp.1366-1367, Aug. 2005.
[4] A. Baharlouei, and B. Jabbari, “Efficient and fair power and subchannel allocation
in multiuser OFDM networks,” IEEE Commun. Lett., Vol. 17, No. 10,
pp. 1905-1907, Oct. 2013.
[5] X. Guan, X. Wang, K. Ma, Z. Liu, and Q. Han, “Spectrum leasing based
on Nash bargaining solution in cognitive radio networks,” Telecommunication
Systems, Aug. 2013.
[6] L. Tang, Q. Chen, G. Wang, X. Zeng, and H. Wang, “Opportunistic power
allocation strategies and fair subcarrier allocation in OFDM-based cognitive
radio networks,” Telecommunication Systems, Vol. 52, Is. 4, pp. 2071-2082,
Apr. 2013.
[7] D. Wu, and Y. Cai, “Power allocation in cooperative communication system
based on coalitional game,” in Proc. Wireless Commun. Networking and Mobile
Computing Conference, pp. 1-5, 2010.
[8] L. Jiang, J. Pang, G. Shen, and D. Wang, “A game theoretic channel allocation
scheme for multi-user OFDMA relay system,” in Proc. IEEE Wireless
Commun. and Networking Conference, pp. 298-303, 2011.
[9] H. Khayatian, R. Saadat, and J. Abouei, “Coalition-based approaches for
joint power control and relay selection in cooperative networks,” IEEE Trans.
on Vehicular Technology, Vol. 62, No. 2, pp.835-842, Feb. 2013.
[10] R. Jain, D. M. Chiu, and W. Hawe, “A quantitative measure of fairness
and discrimination for resource allocation in shared systems,” DEC Research
Report, Vol. TR-301, 1984.
[11] K. J. R. Liu, A. K. Sadek, W. Su, and A. Kwasinski, Cooperative Commun.
and Networking. Cambridge University Press, 2009.
[12] Y. Li, W. Wang, J. Kong, and M. Peng, “Subcarrier pairing for amplify-andforward
and decode-and-forward OFDM relay links,” IEEE Commun. Lett.,
Vol. 13, No. 4, pp. 209-211, Apr. 2009.
[13] W. Saad, Z. Han, M. Debbah, A. Hjorungnes, and T. Basar, “Coalitional game
theory for communication networks: A Tutorial,” IEEE Signal Processing
Magazine, Vol. 26, pp. 77-97, Sep. 2009.
[14] J.F. Nash Jr, “The bargaining problem,” Econometrica, Vol. 18, No. 2, pp.
155-162, 1950.
[15] W. Yu and R. Lui, “Dual methods for nonconvex spectrum optimization of
multicarrier systems,” IEEE Trans. Commun., Vol. 54, No. 7, pp. 1310-1322,
Jul. 2006.
[16] H. Li, H. Luo, X. Wang, and C. Li, “Throughput maximization for OFDMA
cooperative relaying networks with fair subchannel allocation,” in Proc. IEEE
Wireless Commun. and Networking Conference, pp. 1-6, 2009.
[17] C. Liu, X. Qin, S. Zhang, and W. Zhou, “Proportional-fair downlink resource
allocation in OFDMA-based relay networks,” IEEE J. Commun. and Networking,
Vol. 13, No. 6, pp. 633-638, Dec. 2011.
[18] S. Boyd and A. Mutapcic, “Subgradient methods,” Lecture Notes of EE364b,,
Stanford University, Stanford, CA, Spring quarter 2007-2008.
[19] H. W. Kuhn, “The hungarian method for the assignment problem,” in 50
Years of Integer Programming 1958-2008, Springer Berlin Heidelberg, pp. 29-
47, 2010.
[20] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge Cambridge
University Press, 2004.
[21] G. H. Golub, C. F. V. Loan, Matrix Computations. Johns Hopkins University
Press, 3rd edition, 1996.

QR CODE