簡易檢索 / 詳目顯示

研究生: 黃俊傑
Jiun-Jie Huang
論文名稱: 定振幅輕敲式原子力顯微鏡奈米級試片輪廓之量測模擬與分析
Nano-scale sample Contour Measurement Simulation and Analysis by Using Constant-amplitude Tapping Mode Atomic Force Microscopy
指導教授: 林榮慶
Zone-Ching Lin
口試委員: 許覺良
none
傅光華
Kuang-Hua Fuh
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 107
中文關鍵詞: 輕敲式原子力顯微鏡定振幅矩形懸臂探針量測
外文關鍵詞: Tapping Mode Atomic Force Microscopy, Constant-Amplitude, Rectangular Cantilever Probe, Measurement
相關次數: 點閱:233下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究主要是建構TM-AFM定振幅之奈米級模擬量測模型,使用矽(Si)原子之晶格排列出TM-AFM之矩形懸臂探針(Tip)與奈米級階梯與V形標準試片之原子模型,且以莫氏力來計算試片與探針之作用力,配合所推導之TM-AFM振動方程式,建構出TM-AFM定振幅奈米級模擬量測模型。
本文以所建立之TM-AFM定振幅之奈米級模擬量測模型來模擬與分析原子力顯微鏡量測理想奈米級階梯與V形標準試片之形貌與誤差結果,並與真實原子力顯微鏡量測奈米級階梯與V形標準試片之掃描輪廓曲線結果相比較,以驗證本研究模擬量測模型之合理性。且造成模擬掃描階梯輪廓與真實掃描階梯輪廓之誤差原因,除了模擬探針之幾何外型外,還包括真實實驗中所具有之掃描速度所造成之誤差。而造成模擬掃描V型輪廓與真實掃描V型輪廓之誤差原因,除了探針幾何外形與真實實驗之掃描速率外,還包括試片表面形貌影響所造成的誤差。同時針對相同探針尖端圓角半徑不同外形斜邊角度,以理想半圓形奈米級試片進行原子力顯微鏡模擬量測,並探討不同外形斜邊角度對掃描輪廓曲線的影響,結果發現模擬之掃描輪廓主要受到模擬探針之幾何外型的影響。


The study mainly constructs a TM-AFM constant-amplitude nanoscale simulated measuring model. Using the lattice of silicon (Si) atoms, the study arranges the atomic model of TM-AFM rectangular cantilever probe tip as well as the atomic models of nanoscale ladder and V-shaped standard samples. Morse force is adopted to calculate the action force between sample and probe. Also using the induced TM-AFM vibration equation, the study constructs a TM-AFM constant-magnitude nanoscale simulated measuring model.
The study uses TM-AFM constant-amplitude nanoscale simulated measuring model to simulate and analyze the measurement as well as the appearance of the nanoscale ladder sample and the V-shaped standard sample and the error results. They are compared with the real TM-AFM measured nanoscale ladder sample and the curve of scanning profile of the V-shaped standard sample, so as to prove the rationality of the simulated measuring model established by this study. Regarding the reasons for the error between the simulated scanning profile of ladder sample and the real scanning profile of ladder sample, besides the simulated geometric shape of probe, they also include the error caused by the scanning speed in the real experiment. As to the reasons for the error between the simulated scanning V-shaped sample profile and the real scanning V-shaped sample profile, besides the geometric shape of probe and the scanning speed of the real experiment, they also include the error caused by the influence of surface pattern of sample. At the same time, focusing on the same probe tip radius with different bevel angles, the study uses an ideal semicircle nanoscale sample to perform TM-AFM simulated measurement to investigate the influence of different bevel angles on the curve of scanning profile. As found in the results, the simulated scanning profile is mainly influenced by the geometric shape of the simulated probe.

摘要 I Abstract II 誌 謝 III 目 錄 IV 圖目錄 VIII 表目錄 XII 第一章 緒 論 1 1-1 前 言 1 1-2 文獻回顧 2 1-2-1 分子力學文獻回顧 2 1-2-2 原子力顯微術文獻回顧 5 1-3 研究目的及內容 7 1-4 本文架構 9 第二章 原子力顯微術簡介與原理 11 2-1 原子力顯微鏡的操作原理 11 2-2 原子力顯微鏡的操作模式 12 2-2-1 接觸模式(Contact mode) 13 2-2-2 非接觸模式(Non-contact mode or NC-AFM) 14 2-2-3 敲擊模式(Tapping mode) 15 2-3 原子力顯微鏡之探針 16 2-4 原子力顯微鏡校正用標準試片 17 第三章 輕敲式原子力顯微鏡量測實驗 20 3-1 實驗目的 20 3-2 實驗設備 20 3-3 實驗之試片與探針 23 3-3-1 實驗試片 23 3-3-2 探針之選擇 26 3-4 實驗結果 29 第四章 理論基礎 32 4-1 分子力學 32 4-1-1 勢能函數 32 4-1-2 截斷半徑 35 4-1-3 分子間作用力方程式 36 4-2 TM-AFM探針振動理論 36 第五章 定振幅輕敲式原子力顯微鏡量測模擬系統之建構與模擬 39 5-1 定振幅量測之物理模型 39 5-1-1 物理模型與基本假設 40 5-1-2 理想晶格原子模型之建構 42 5-1-3 分子勢能函數之選擇 44 5-1-4 截斷半徑 46 5-2 探針懸臂之受力 47 5-3 TM-AFM探針懸臂之振動理論 50 5-3-1 TM-AFM探針懸臂之振動理論推導 50 5-3-2 TM-AFM定振幅模擬量測中共振頻率、致動頻率、共振振幅、致動振幅與參數dstart之量測與決定 54 5-3-3 TM-AFM定振幅模擬量測中等效質量Meff、彈簧常數K、阻尼係數C與品質因子Q之決定 58 5-3-4 參數設定進行步驟 62 5-4模擬量測模型模擬試片的表面形貌之模擬步驟與流程圖 63 第六章 結果與討論 67 6-1 驗證分析 67 6-2定振幅輕敲式原子力顯微鏡掃描模擬奈米級V形試片表面輪廓分析 75 6-3 標準階梯與V形試片誤差補償 88 6-4 探針外形斜邊對試片掃描影響分析 89 第七章 結論與建議 98 7-1 結論 98 7-2 建議 102 參 考 文 獻 103

[1] D. M. Eigler and E. K. Schweizer, “Positioning single atoms with a scanning tunneling microscope,” Nature, Vol.344, pp.524-528, (1990).
[2] J.H. Irving and J.G. Kirkwood, “The statistical mechanical theory of transport properties. IV. The equations of hydrodynamics”, J. Chem. Phys., Vol.18, pp. 817-829, (1950).
[3] J.E. Lennard-Jonse, “The Determination of Molecular Fields. I. From the Variation of the Viscosity of a Gas with Temperature”, Proc. Roy. Soc. A, Vol.106, pp.441-462, (1924).; “The Determination of Molecular Fields. II. From the Variation of the Viscosity of a Gas with Temperature”, Proc. Roy. Soc. A, Vol.106, p.463, (1924).
[4] L.A. Girifalco and V.G. Weizer, “Application of the Morse Potential
Function to Cubic Metals”, Phys. Rev., Vol.114, No.3, pp.687-690,
(1959).
[5] R.A. John, “Interstitials and Vacanciesin α-Iron”, Phys. Rev.,
Vol.134, No.5A, pp.1329-1336, (1964).
[6]F. Milstein, “Applicability of exponentially attractive and repulsive interatomic potential function in description of cubic crystals,”
J. Appl. Phys, Vol.44, No.9, pp.3825-3832, (1973).
[7]F. H. Stillinger and T. A. Weber, “Computer simulation of local order in condensed phases of Silicon,” Phys. Rev. B, Vol.31, pp.5262-5271, (1985).
[8]S. M. Foiles, M. I. Baskes and M. S. Daw, “Embedded-atom- method function for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys,” Phys. Rev. B, Vol.33, No.12, pp.7983-7991, (1986).
[9] M. S. Daw, S. M. Foiles and M. I. Baskes, “The embedded-atom method: a review of theory and applications,” Materials Science Reports, Vol.9, pp.251- 310, (1993).
[10]M. I. Baskes, J. S. Nelson and A. F. Wright, “Semiempirical modified embedded-atom potentials for silicon and germanium,” Phys. Rev. B, Vol.40, No.9, pp.6085-6100, (1989).
[11]M.I. Baskes, “Modified embedded-atom potentials for cubic materials and impurities,” Phys. Rev. B, Vol.46, pp.2727-2742, (1992).
[12] G. Binning and C.F. Quate, ”Atomic Force Microscopy, “Phys. Rev. Lett., Vol.56, pp.930-933, (1986).
[13] Y. Martin, C.C. Williams, and H.K. Wickramasinghe, “Atomic force microscopy force mapping profiling on a sub 100-A scale”, J. Appl. Phys., Vol.61, pp.4723-4729, (1987).
[14] A.L. Weisenhorn, P. Maivald, H.J. Butt and P.K. Hansma, “Measuring adhesion, attraction, and repulsion between surface in liquid with an atomic-force microscope”, Phys. Rev. B, Vol.45, pp.226-232, (1992).
[15] U. Hartmann, “Van der Waals interactions between sharp probes and flat sample surface”, Phys. Rev. B, Vol.45, pp.2404-2407, (1991).
[16] F. O. Goodman and N. Garcia, “Roles of the attractive and repulsive forces in atomic force microscopy”, Phys. Rev. B, Vol.43, pp.4728-4731, (1991).
[17] S. Watanabe, Khane, T. Ohye, M. Ito and T. Goto, “Electrostatic force microscope imaging analyzed by the surface charge method”, J. Vac. Sci. Technol. B, Vol.11, pp.1774-1781, (1993).
[18] M. Saint Jean, S Hudlet, C. Guthmann and J. Berger, “Van der Waals and capacitive force in atomic microscopes”, J. Appl. Phys., pp. 5245-5248, (1999).
[19] H. Holscher, U. D. Schwarz and R. Wiesendanger, “Calculation of the Frequency shift in dynamic force microscopy,” Applied Surface Science, Vol.140, pp.344-351, (1999).
[20] N. Sasaki, M. Tsukada, R. Tamura, K. Abe and N. Sato, “Dynamics of the cantilever in noncontact atomic force microscopy”, Applied Physics A Materials, Vol.66, pp.287-291, (1998).
[21] U. Rabe, K. Janser and W. Amold, “Vibrations of free and surface-coupled force microscope cantilevers : Theory and experiment, " American institute of physics, Vol.67, pp. 3281-3293, (1996).
[22] H. Nanjo, L. Nony, M. Yoneta and J. P. Aime “Simulation of section curve by phase constant dynamic mode atomic force microscopy in non-contact situation” Applied Surface Science, Vol.210, pp.49-53, (2003).
[23] Lübben. Jörn F, and J. Diethelm, “Nanoscale high-frequency contact mechanics using an AFM tip and a quartz cryatal resonator”, Langmuir Vol. 20., No.9, pp.3698-3703, (2004).
[24] P. Kurt, L. Gamble, and K. Wynne, “Surface characterization of biocidal polyurethane modifiers having poly(3,3-substituted)oxetane soft blocks with alkylammonium side chains”, Langmuir, Vol. 24, No. 11, Jun 3, pp.5816-5824, (2008).
[25] “Scanning Probe Microscopy Training Notebook”, Digital Instruments Veeco Metrology Group, Version 3.0, U.S.A. (2000).
[26] 奈米級標準試片, http://www.ntmdt.com/
[27] Dimension 3100研究型原子力顯微鏡機台http://www.veeco.com.tw/
[28] OMCL-AC240TS-C2 型號之矩形懸臂探針特性http://probe.olympus-global.com/en/
[29] Michael Rieth, “Nano-engineering in science and technology : an introduction to the world of nano-design”, World Scientific, (2003).
[30] L. A. Girifalco and V. G. Weizer, “Application of the Morse Potential
Function to Cubic Metals”, Phys. Rev., Vol.114, No.3, pp.687-690,
(1959).
[31] R. W. Stark, G. Schitter, and A. Stemmer, “Tunning the interaction force in tapping mode atomic force microscopy”, Physical Review B, Vol.68, 085401(p.1-p.5),(2003).
[32] 林明獻,“矽晶圓半導體材料技術”,全華,初版,(2001)。
[33] D. Martin, D.L. Thompson and L.M. Raff, “Theoretical studies of termolecular thermal recombination of silicon atoms”, J. Chem. Phys. Vol.84, No.8, pp.4426-4428, (1986).
[34] C.M. Marian, M. Gastreich and J.D. Gale, “An empirical two-body potential for solid silicon nitride, boron nitride, and borosilazane modification”, Phys. Rev. B, Vol.62, pp.3117-3124, (2000).
[35] “MultiMode. SPM Instruction Manual Version 4.31ce”, Digital Instruments Veeco Metrology Group, U.S.A. (1997).
[36] “MultiMode. SPM Training Notebookl Version 4.31ce”, Digital Instruments Veeco Metrology Group, U.S.A. (2000).
[37] S. Krüger, D. Krüger and A. Janshoff, “Scanning Force Microscopy Based Rapid Force Curve Acquisition on Supported Lipid Bilayers: Experiments and Simulations Using Pulsed Force Mode”, Wiley-VCH Verlag GmbH&Co. KGaA,Weinheim,
Chem PhysChem, Vol5, No.7, pp.989-997 , (2004).
[38] V. Bouchiat, and D. Esteve, “Lift-off lithography using an atomic force microscope”, Appl. Phys. Lett., Vol.69, No.20, pp.3098-3100, (1996).

[39] P. Attard, J. Schulz and M. Rutland, “Dynamic surface force measurement. I. van der Waals collisions”, Review of Scientific Instruments, Vol.69, No.11, pp.3853-3866, (1998).
[40]林榮慶,“奈米級振動環境之輕敲式原子力顯微鏡模擬奈米級動態量測模式建構及探針尺寸參數分析(1/3)“,國科會計畫報告,NSC 95-2221-E-011-014-MY3,(2006)

QR CODE