簡易檢索 / 詳目顯示

研究生: 韓詠亘
Yong-Xuan Han
論文名稱: 抗菌膠原蛋白海綿之生物材料設計
Design of collagen sponge as antibacterial biomaterials
指導教授: Hossein Hosseinkhani
Hossein Hosseinkhani
口試委員: 白孟宜
Meng-Yi Bai
李賢明
Hsien-Ming Lee
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 70
中文關鍵詞: 膠原蛋白抗菌止血生物材料
外文關鍵詞: collagen, antibacterial, hemostasis, biomaterial
相關次數: 點閱:551下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

膠原蛋白擁有生物降解性、生物吸收性、生物相容性、促進細胞增生、傷口修復以及止血的能力。由上述性質,膠原蛋白可同時扮演細胞支架與止血的角色。許多膠原蛋白製的止血產品已由FDA認證。在進行脊椎手術時,止血鉗和電燒法無法提供完善的止血時,膠原蛋白在手術中就扮演了重要的角色。然而,雖然膠原蛋白有許多吸引人的性質卻容易成為細菌的溫床。此研究將藥物以化學鍵形式與膠原蛋白結合,使膠原蛋白含廣譜抗菌能力。實際上,手術部位感染(SSI)的原因沒有辦法很清楚的被界定,因為感染來源可能來自醫院內部、社區住家亦或是病人本身,因此手術後的感染的來源是很難預測的。潮濕、溫暖並提供細菌養分的傷口有更高的風險會成為感染源。此研究在於設計可釋放高濃度抗生素藥物的高分子藥物載體,目的在於預防手術感染的發生並能達到止血的效果。抗菌膠原蛋白抗菌、止血與傷口修復的綜合概念可應用在開放型傷口,如糖尿病腳潰瘍與燒傷。


Collagen is a biomaterial characterized by its biodegradability, bioabsorbability, biocompatibility, ability to improve cellular proliferation, and wound healing and hemostatic properties. Owing to these properties, collagen can be used as a medical device that plays both scaffolding and hemostatic roles. Many commercial products made of collagen have also been approved for sale by the USFDA. During spinal surgery, artery clamp and electrocautery cannot always provide complete hemostasis in the surgical site, as blood will exude continuously from countless capillaries. Collagen as a hemostasis biomaterial emphasizes its importance in the chance when artery clamps and electrocautery don’t work in surgical site hemostasis. However, collagen is vulnerable to bacteria. While a collagen medical device has versatile functions, its potential to create a bacterial nidus raises concerns in clinical uses. In order to fabricate an antibacterial hemostatic biomaterial using collagen, we tried to conjugate an antibiotic that was screened for its bactericidal ability toward common bacteria present in hospitals. In reality, the cause of an SSI (surgical site infection) is not always clear, as the infection may be nosocomial, community-, or patient-acquired; in other words, we cannot predict when and how patients contract SSIs. As long as the wound has potential to become a bacterial breeding ground with a humid, warm, and nutrient-providing environment, it carries a higher risk for patients to suffer from SSIs. To address this issue, we attempted to design a polymer drug carrier that can apply a high concentration of antibiotic to help prevent SSIs and to achieve hemostatic efficacy. With these sought-after properties, the concept of such a hemostatic, antibacterial biomaterial could also be applied on open wounds, such as DFU (diabetes foot ulcers) and burn wounds, to initiate faster wound healing and to prevent bacterial growth like biofilm. Hence, we studied the fabrication and evaluation of antibacterial collagen in the context of these concerns and clinical problems as elucidated in below.

Abstract3 Chapter 1. Introduction9 1.1 Research background9 1.2 Intra- and post-operative hemostasis10 1.3 Absorbable topical hemostatic agent11 1.4 Collagen13 1.4.1 Physical and chemical property13 1.4.2 Wound healing14 1.4.3 Critical role in hemostasis16 1.4.4 Dilemma as a medical device18 1.5 Collagen as a drug carrier18 1.6 Drug screening: Levofloxacin20 1.7 Motivation22 Chapter 2. Material and Instrument24 2.1 Material24 2.2 Instrument and device24 Chapter 3. Method25 3.1 Hemostatic evaluation25 3.2 Levofloxacin conjugated collagen sponge synthesis in bottom –up way26 3.2.1 Estimation of the number of amino group on collagen triplex27 3.2.2 Optimal reaction time evaluation27 3.2.2 LEC sponge synthesis31 3.3 Antibacterial serial test32 3.3.1 Inoculum check32 3.3.2 Inhibition zone test34 3.3.3 Concentration dependent test35 3.3.4 Time-kill curve35 3.4 Qualification36 3.4.1 UV-Visible spectrum36 3.4.2 FTIR-ATR36 3.4.3 HNMR38 3.4.4 Scanning Electron Microscope morphology observation38 3.5 Drug release test38 3.6 Blood clotting index39 Chapter 4. Result and discussion40 4.1 General properties of the Levofloxacin conjugated collagen sponge40 4.2 Drug release47 4.3 Antibacterial series test48 4.4 Blood clotting index51 4.5 SEM52 Chapter 6. Future prospect55 Reference60

Reference
1.Wright, J.D., et al., Patterns of use of hemostatic agents in patients undergoing major surgery. J Surg Res, 2014. 186(1): p. 458-66.
2.Sabel, M. and W. Stummer, The use of local agents: Surgicel and Surgifoam. Eur Spine J, 2004. 13 Suppl 1: p. S97-101.
3.McKelvey, S.T.D., Operative surgery and management. 3rd ed. G. Keen and J. R. Farndon (eds). 282 × 220 mm. Pp. 970. Illustrated. 1994. Oxford: Butterworth—Heinemann. £95. British Journal of Surgery, 1994. 81(12): p. 1833-1833.
4.Armstrong, J.K., et al., The effect of three hemostatic agents on early bone healing in an animal model. BMC Surg, 2010. 10: p. 37.
5.Howe, N. and B. Cherpelis, Obtaining rapid and effective hemostasis: Part I. Update and review of topical hemostatic agents. J Am Acad Dermatol, 2013. 69(5): p. 659 e1-659 e17.
6.李保, et al., 新型快速止血材料的止血评价与止血机制. 实验技术与管理, 2007. 24(7): p. 51-54.
7.Peng, T., Biomaterials for hemorrhage control. Trends Biomater Artif Organs, 2010. 24(1): p. 27-68.
8.Tanaka, K., et al., Recent Advances in Thrombosis and Hemostasis 2008. 2008: Springer.
9.Clemetson, K.J., Platelets and primary haemostasis. Thromb Res, 2012. 129(3): p. 220-4.
10.Broos, K., et al., Platelets at work in primary hemostasis. Blood Rev, 2011. 25(4): p. 155-67.
11.Sundaram, C.P. and A.C. Keenan, Evolution of hemostatic agents in surgical practice. Indian journal of urology: IJU: journal of the Urological Society of India, 2010. 26(3): p. 374.
12.Cochrane, D. and P. Steinbok, Microfibrillar collagen hemostat-induced necrotizing granulomatous inflammation developing after craniotomy: a pediatric case series. 2010.
13.Samudrala, S., Topical Hemostatic Agents in Surgery: A Surgeon's Perspective. AORN Journal, 2008. 88(3): p. S2-S11.
14.Larson, P.O., REVIEW: Topical Hemostatic Agents for Dermatologic Surgery. The Journal of Dermatologic Surgery and Oncology, 1988. 14(6): p. 623-632.
15.PALM, M.D. and J.S. ALTMAN, Topical Hemostatic Agents: A Review. Dermatologic Surgery, 2008. 34(4): p. 431-445.
16.Polizzotti, B.D., S. Arab, and B. Kühn, Intrapericardial delivery of gelfoam enables the targeted delivery of Periostin peptide after myocardial infarction by inducing fibrin clot formation. PloS one, 2012. 7(5): p. e36788-e36788.
17.Epstein, N.E., R.S. Silvergleid, and R. Hollingsworth, Increased postoperative cervical myelopathy and cord compression resulting from the use of Gelfoam. The Spine Journal, 2009. 9(2): p. e19-e21.
18.Polizzotti, B., S. Arab, and B. Kühn, Intrapericardial Delivery of Gelfoam Enables the Targeted Delivery of Periostin Peptide after Myocardial Infarction. 2012.
19.Rastogi, V. and V. Dy, Control of port-site bleeding from smaller incisions after laparoscopic cholecystectomy surgery: a new, innovative, and easier technique. Surgical Laparoscopy Endoscopy & Percutaneous Techniques, 2002. 12(4): p. 224-226.
20.Gabay, M. and B.A. Boucher, An essential primer for understanding the role of topical hemostats, surgical sealants, and adhesives for maintaining hemostasis. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 2013. 33(9): p. 935-955.
21.Qerimi, B., et al., Collagen hemostat significantly reduces time to hemostasis compared with cellulose: COBBANA, a single-center, randomized trial. Am J Surg, 2013. 205(6): p. 636-41.
22.Cain, B., Essentials of Surgery: Scientific Principles and Practice. Ann Surg. 1999 Dec;230(6):824.
23.Di Lullo, G.A., et al., Mapping the Ligand-binding Sites and Disease-associated Mutations on the Most Abundant Protein in the Human, Type I Collagen. Journal of Biological Chemistry, 2002. 277(6): p. 4223-4231.
24.Szpak, P., Fish bone chemistry and ultrastructure: implications for taphonomy and stable isotope analysis. Journal of Archaeological Science, 2011. 38(12): p. 3358-3372.
25.Bolboaca, S. and L. Jantschi, AMINO ACIDS SEQUENCE ANALYSIS ON COLLAGEN. 2009. Vol. 64. 2009.
26.Jarvelainen, H., et al., Extracellular matrix molecules: potential targets in pharmacotherapy. Pharmacol Rev, 2009. 61(2): p. 198-223.
27.Gómez-Guillén, M.C., et al., Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocolloids, 2011. 25(8): p. 1813-1827.
28.Thompson, I.J., Sabiston Textbook of Surgery, 17th Edition, Board Review. ANZ Journal of Surgery, 2006. 76(1-2): p. 13-13.
29.Wojtowicz, A.M., et al., Coating of biomaterial scaffolds with the collagen-mimetic peptide GFOGER for bone defect repair. Biomaterials, 2010. 31(9): p. 2574-2582.
30.Dedhar, S., E. Ruoslahti, and M.D. Pierschbacher, A cell surface receptor complex for collagen type I recognizes the Arg-Gly-Asp sequence. J Cell Biol, 1987. 104(3): p. 585-93.
31.Glowacki, J. and S. Mizuno, Collagen scaffolds for tissue engineering. Biopolymers, 2008. 89(5): p. 338-44.
32.Truong, Y.B., et al., Collagen-based layer-by-layer coating on electrospun polymer scaffolds. Biomaterials, 2012. 33(36): p. 9198-204.
33.Chevallay, B. and D. Herbage, Collagen-based biomaterials as 3D scaffold for cell cultures: applications for tissue engineering and gene therapy. Medical & Biological Engineering & Computing, 2000. 38(2): p. 211-218.
34.Buttafoco, L., et al., Electrospinning of collagen and elastin for tissue engineering applications. Biomaterials, 2006. 27(5): p. 724-734.
35.Jung, S. and M. Moroi, Platelet Collagen Receptors, in Recent Advances in Thrombosis and Hemostasis 2008, K. Tanaka, et al., Editors. 2008, Springer Japan. p. 231-242.
36.Anders, J.O., et al., Gelatin-based haemostyptic Spongostan as a possible three-dimensional scaffold for a chondrocyte matrix?: AN EXPERIMENTAL STUDY WITH BOVINE CHONDROCYTES. Journal of Bone & Joint Surgery, British Volume, 2009. 91-B(3): p. 409-416.
37.Lih, E., et al., Rapidly curable chitosan-PEG hydrogels as tissue adhesives for hemostasis and wound healing. Acta Biomater, 2012. 8(9): p. 3261-9.
38.Luo, Z., S. Wang, and S. Zhang, Fabrication of self-assembling D-form peptide nanofiber scaffold d-EAK16 for rapid hemostasis. Biomaterials, 2011. 32(8): p. 2013-20.
39.Boon, G.D., An overview of hemostasis. Toxicologic pathology, 1993. 21(2): p. 170-179.
40.Nakamura, N., et al., [Clinical application of microfibrillar collagen hemostat (Avitene) in neurosurgical field]. No Shinkei Geka, 1988. 16(8): p. 933-8.
41.Suri, R.M. and J.M. Austyn, Bacterial lipopolysaccharide contamination of commercial collagen preparations may mediate dendritic cell maturation in culture. Journal of Immunological Methods, 1998. 214(1–2): p. 149-163.
42.Chvapil, M., Collagen sponge: theory and practice of medical applications. Journal of biomedical materials research, 1977. 11(5): p. 721-741.
43.Lapid, O., Use of gentamicin collagen sponges for the treatment of periprosthetic breast implant infection. Journal of Plastic, Reconstructive & Aesthetic Surgery, 2011. 64(12): p. e313-e316.
44.Bennett-Guerrero, E., et al., Gentamicin–collagen sponge for infection prophylaxis in colorectal surgery. New England Journal of Medicine, 2010. 363(11): p. 1038-1049.
45.Liu, Y., et al., Preparation and characterization of a novel tobramycin-containing antibacterial collagen film for corneal tissue engineering. Acta Biomater, 2014. 10(1): p. 289-99.
46.Chang, W.K., et al., Gentamicin-Collagen Implants to Reduce Surgical Site Infection: Systematic Review and Meta-analysis of Randomized Trials. Annals of Surgery, 2013. 258(1): p. 59-65.
47.Mishra, P.K., et al., Role of topical application of gentamicin containing collagen implants in cardiac surgery. Journal of cardiothoracic surgery, 2014. 9(1): p. 122.
48.Ruszczak, Z. and W. Friess, Collagen as a carrier for on-site delivery of antibacterial drugs. Advanced drug delivery reviews, 2003. 55(12): p. 1679-1698.
49.Kasoju, N., et al., Exploiting the potential of Collagen as a Natural Biomaterial in Drug Delivery. Journal of Proteins & Proteomics, 2013. 1(1).
50.RAMSHAW, J.A., P.R. VAUGHAN, and J.A. WERKMEISTER, Applications of collagen in medical devices. Biomedical Engineering: Applications, Basis and Communications, 2001. 13(01): p. 14-26.
51.Lee, C.H., A. Singla, and Y. Lee, Biomedical applications of collagen. International journal of pharmaceutics, 2001. 221(1): p. 1-22.
52.Friess, W., Collagen–biomaterial for drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 1998. 45(2): p. 113-136.
53.Varga, M., et al., Application of gentamicin-collagen sponge shortened wound healing time after minor amputations in diabetic patients–a prospective, randomised trial. Arch Med Sci, 2014. 10(2): p. 283-287.
54.Park, S.-N., et al., Characterization of porous collagen/hyaluronic acid scaffold modified by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide cross-linking. Biomaterials, 2002. 23(4): p. 1205-1212.
55.Stahlmann, R. and H.M. Lode, Risks associated with the therapeutic use of fluoroquinolones. Expert Opinion on Drug Safety, 2013. 12(4): p. 497-505.
56.Croom, K.F. and K.L. Goa, Levofloxacin: a review of its use in the treatment of bacterial infections in the United States. Drugs, 2003. 63(24): p. 2769-802.
57.Drlica, K. and X. Zhao, DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiology and Molecular Biology Reviews, 1997. 61(3): p. 377-92.
58.Noel, G.J., A Review of Levofloxacin for the Treatment of Bacterial Infections. Clinical Medicine Insights: Therapeutics, 2009. 1(CMT-1-Noel-et-al): p. 433-458.
59.Liu, H., Safety Profile of the Fluoroquinolones. Drug Safety, 2010. 33(5): p. 353-369.
60.Control(Taiwan), C.f.D., Annual Report of Nosocomial Infections Surveillance System. 2012.
61.Control(Taiwan), C.f.D., Annual Report of Nosocomial Infections Surveillance System. 2006.
62.Control(Taiwan), C.f.D., Annual Report of Nosocomial Infections Surveillance System. 2007.
63.Control(Taiwan), C.f.D., Annual Report of Nosocomial Infections Surveillance System. 2008.
64.Control(Taiwan), C.f.D., Annual Report of Nosocomial Infections Surveillance System. 2009.
65.Control(Taiwan), C.f.D., Annual Report of Nosocomial Infections Surveillance System. 2010.
66.Control(Taiwan), C.f.D., Annual Report of Nosocomial Infections Surveillance System. 2011.
67.Damink, L.O., et al., In vitro degradation of dermal sheep collagen cross-linked using a water-soluble carbodiimide. Biomaterials, 1996. 17(7): p. 679-684.
68.Babel, W., et al., Process for making a low molecular weight gelatine hydrolysate and gelatine hydrolysate compositions. 2008, Google Patents.
69.Optics, B., Application Note AN # 79 Attenuated Total Reflection (ATR) – a versatile tool for FT-IR spectroscopy 2014.
70.Santoro, M.I.R., et al., Quantitative determination of gatifloxacin, levofloxacin, lomefloxacin and pefloxacin fluoroquinolonic antibiotics in pharmaceutical preparations by high-performance liquid chromatography. Journal of Pharmaceutical and Biomedical Analysis, 2006. 40(1): p. 179-184.
71.JING, S.-y. and J.-y. ZHANG, Determination of Levofloxacin Hydrochloride Tablets by UV Spectrophotometry [J]. Progress in Pharmaceutical Sciences, 2008. 7: p. 006.
72.de Campos Vidal, B. and M.L.S. Mello, Collagen type I amide I band infrared spectroscopy. Micron, 2011. 42(3): p. 283-289.
73.Camacho, N.P., et al., FTIR microscopic imaging of collagen and proteoglycan in bovine cartilage. Biopolymers, 2001. 62(1): p. 1-8.
74.Salem, A., H. Mossa, and B. Barsoum, Quantitative determinations of levofloxacin and rifampicin in pharmaceutical and urine samples using nuclear magnetic resonance spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2005. 62(1): p. 466-472.
75.Steinhardt, J. and C.H. Fugitt, Catalyzed hydrolysis of amide and peptide bonds in proteins. J. Res. Natl Bur. Stand, 1942. 29: p. 315-327.
76.Radzicka, A. and R. Wolfenden, Rates of uncatalyzed peptide bond hydrolysis in neutral solution and the transition state affinities of proteases. Journal of the American Chemical Society, 1996. 118(26): p. 6105-6109.
77.Spiandorello, W.P., F. Morsch, and F.S.A. Spiandorello, Prevalence of Streptococcus pneumoniae resistance to penicillin in two hospitals of Caxias do Sul. Jornal de Pneumologia, 2003. 29: p. 15-20.
78.Mandigers, C., et al., A hospital outbreak of penicillin-resistant pneumococci in The Netherlands. European Respiratory Journal, 1994. 7(9): p. 1635-1639.
79.Dunbar, L.M., et al., High-Dose, Short-Course Levofloxacin for Community-Acquired Pneumonia: A New Treatment Paradig. Clinical infectious diseases, 2003. 37(6): p. 752-760.
80.Shih, M.F., et al., Platelet adsorption and hemolytic properties of liquid crystal/composite polymers. Int J Pharm, 2006. 327(1-2): p. 117-25.
81.Dai, T., et al., Topical antimicrobials for burn wound infections. Recent patents on anti-infective drug discovery, 2010. 5(2): p. 124.
82.Church, D., et al., Burn wound infections. Clinical microbiology reviews, 2006. 19(2): p. 403-434.
83. F. Mottaghitalab, M.A. Shokrghozar, M. Farokhi, H. Hosseinkhani. Silk fibrin nanoparticles as novel drug delivery systems. Journal of Controlled Release, 206, 161-176 (2015).
84. S.M. Seyedpour, M. Pachenari, M. Janmaleki, M. Alizadeh, H. Hosseinkhani. Effects of Antimitotic Drug on Mechanical Behaviors of Cytoskeleton in Distinct Grades of Colon Cancer Cell Lines. Journal of Biomechanics, 48, 1172-1178 (2015).
85. H. Hosseinkhani, F. Abedini, K.L. Ou, A.J. Domb. Polymers in Gene Therapy Technology. Polymers For Advanced Technologies, 26, 198-211 (2015).
86. M. Pachenari, M. Seyedpour, S. Babazadeh Shayan, S. Taranejoo, M. Janmaleki, H. Hosseinkhani. Mechanical properties of cancer cytoskeleton depend on actin filaments to microtubules content: Investigating different grades of colon cancer cell lines. Journal of Biomechanics, 47, 373-379 (2014).
87. R Rahbarghazi, SM Nassiri, SH Ahmadi, E Mohammadi, S Rabbani, A. Araghi, H. Hosseinkhani. Dynamic induction of pro-angiogenic milieu after transplantation of marrow-derived mesenchymal stem cells in experimental myocardial infarction. International Journal of Cardiology, 173, 453-466 (2014).
88. W.Y. Yeo, H. Hosseinkhani, S.A. Rahman, R. Rosli, A.J. Domb, S. Abdullah Safety Profile of Dextran-Spermine Gene Delivery Vector in Mouse Lungs. Journal of Nanoscience and Nanotechnology, 14, 3328-3336 (2014).
89. M. Alibolandi, K. Abnous, M. Ramezani, H. Hosseinkhani, F. Hadizadeh. Synthesis of AS1411-Aptamer-Conjugated CdTe Quantum Dots with High Fluorescence Strength for Probe Labeling Tumor Cells. Journal of Fluorescence, 24, 1519-1529 (2014).
90. Ghodsizadeh, H. Hosseinkhani, A. Piryaei, B. Pournasr, M. Najarasl, Y. Hiraoka, H. Baharvand. Galactosylated Collagen Matrix Enhanced In vitro Maturation of Human Embryonic Stem Cell-derived Hepatocyte-like Cells. Biotechnology Letters, 36, 1095-1106 (2014).
91. Shi, R. Tatu, Q. Liu, H. Hosseinkhani. Stem Cells Based Tissue Engineering for Regenerative Medicine. Nano LIFE, 4 (2) 1-13 (2014).
92. W. He, H. Hosseinkhani, R. Mohammadinejad, Z. Roveimiab, D.Y. Hueng, K.L. Ou, A.J. Domb. Polymeric Nanoparticles for Therapy and Imaging. Polymers For Advanced Technologies, 25, 1216-1225 (2014).
93. H.C. Han, H.C. Lo, K.H. Chen, L.C. Chen, K.L. Ou, H. Hosseinkhani. Nano-textured fluidic biochip as biological filter for selective survival of cells and biological microorganisms. Journal of Biomedical Materials Research Part A, 1-15 (2014).
94. C.S. Hu, S.L. Tang, C.H. Chiang, H. Hosseinkhani, P.D. Hong, M.K Yeh. Characterization and antitumor effects of chondroitin sulfate-chitosan nanoparticles delivery system. Journal of Nanoparticle Research, 16, 1-15 (2014).
95. H. Jahani, F. Azizi Jalilian, S. Kaviani, M. Soleimani, N. Abassi, H. Hosseinkhani .Controlled surface morphology and hydrophilicity of polycaprolactone towards differentiation of mesenchymal stem cells into neural cells. Journal of Biomedical Materials Research Part A, 1-7 (2014).
96. K.L. Ou, H. Hosseinkhani. 3D in vitro Technology for Medical Applications. International Journal of Molecular Sciences, 15, 17938-17962 (2014).
97. K.L. Ou, J.S. Chu, H. Hosseinkhani, J.F. Chiou, C.H. Yu. Biomedical nanostructured coating for minimally invasive surgery devices applications: characterization, cell cytotoxicity evaluation and an animal study in rat. Surgical Endoscopy, 28: 2174-2188 (2014).
98. C.F. Huang, C.F. Huang, H.J. Chiang, H.J. Lin, H. Hosseinkhani, K.L. Ou, P.W. Peng. Comparison of Cell Response and Surface Characteristics on Titanium Implant with SLA and SLAffinity Functionalization. Journal of Electrochemical Society, 161, 15-20 (2014).
99. H. Hosseinkhani, P.D. Hong, D.S. Yu. Self-assembled Proteins and Peptides for Regenerative Medicine. Chemical Reviews, 113, 4837-4861 (2013).
100. H. Hosseinkhani, Y.R. Chen, W. He, P.D. Hong, D.S. Yu, A.J. Domb. Engineering of Magnetic DNA Nanoparticles for Tumor-Targeted Therapy. Journal of Nanoparticle Research, 15, 1-10 (2013).
101. H. Hosseinkhani, Y. Hiraoka, C.H. Li, Y.R. Chen, D.S. Yu, P.D. Hong, K.L. Ou. Engineering Three-Dimensional Collagen-IKVAV Matrix to Mimic Neural Microenvironment. ACS Chemical Neuroscience, 4, 1229-35 (2013).
102. H. Hosseinkhani, W.J. He, C.H. Chiang, D.S. Yu, P.D. Hong, A.J. Domb, K.L. Ou. Biodegradable Nanoparticles for Gene Therapy Technology. Journal of Nanoparticle Research, 15, 1-15 (2013).
103. R. Amini, F. Azizi Jalilian, S. Abdullah, A. Veerakumarasivam, H. Hosseinkhani, A.S. Abdulamir, A .J. Domb, D. Ickowicz, R. Rosli. Dynamics of PEGylated-Dextran-Spermine Nanoparticles for Gene Delivery to Leukemic Cells. Applied biochemistry and biotechnology, 170, 841-853, (2013).
104. W.-J. He, H. Hosseinkhani, P.-D. Hong, C.-H. Chiang, D.-S., Yu. Magnetic Nanoparticles for Imaging Technology. International Journal of Nanotechnology, 10, 930-944 (2013).
105. C.-H. Chiang, H. Hosseinkhani, W.-S. Cheng, C.-W. Chen, C.-H. Wang, Y.-L. Lo. Improving drug loading efficiency and delivery performance of micro- and nanoparticle preparations through optimizing formulation variables. International Journal of Nanotechnology, 10, 996-1006 (2013).
106. S.-F. Ou, C.-S. Chen, H. Hosseinkhani, C.-H. Yu, Y.-D. Shen, K.-L. Ou. Surface properties of nano-structural silicon-doped carbon films for biomedical applications. International Journal of Nanotechnology, 10, 945-958 (2013).
107. H. Hosseinkhani, K.H. Chen. Special Issue on Nanotechnology Research in Taiwan. International Journal of Nanotechnology, 10, 837-839 (2013).
108. N. Baheiraei, M. Azami, H. Hosseinkhani. Investigation of Magnesium incorporation within gelatin/calcium phosphate nanocomposite scaffold for bone tissue engineering. International Journal of Applied Ceramic Technology, 1-9 (2013).
109. H. Hosseinkhani, P.D. Hong, D.S. Yu, Y.R. Chen, I.V. Farber, A.J. Domb. Development of 3D in vitro platform technology to engineer mesenchymal stem cells. International Journal of Nanomedicine, 7, 3035-3043 (2012).
110. W. Khan, H. Hosseinkhani, D. Ickowicz, P.D. Hong, D.S. Yu, A.J. Domb. Polysaccharide Gene Transfection Agents. Acta Biomaterialia, 8, 4224-4232 (2012).
111. Abedini, Hosseinkhani, M. Ismail, A.J. Domb, A.R. Omar, C. Pei Pei, P.D. Hong, D.S. Yu, I.V. Farber. Cationized Dextran Nanoparticles-Encapsulated CXCR4-siRNA Enhanced Correlation between CXCR4 Expression and Serum ALP in Colorectal Cancer. International Journal of Nanomedicine, 7, 4159-4168 (2012).
112. K. Subramani, S. Pathak, H. Hosseinkhani. Recent trend in diabetes treatment using nanotechnology. Digest Journal of Nanomaterials and Biostructures, 7, 85-95 (2012).
113. H. Hosseinkhani. 3D in vitro technology for drug discovery. Current Drug Safety, 7, 37-43 (2012).
114. M. Mohammad-Taheri, E. Vasheghani-Farahani, H. Hosseinkhani, S.A. Shojaosadati, M. Soleimani. Fabrication and characterization of a new MRI contrast agent based on a magnetic dextran-spermine nanoparticle system. Iranian Polymer Journal, 21, 239-251 (2012).
115. R. Amini, H. Hosseinkhani, A. Jalilian, S. Abdullah, R. Rosli. Engineered Smart Biomaterials for Gene Delivery. Gene Therapy and Molecular Biology, 14, 72-86 (2012).
116. M. Mahmoudi, H. Hosseinkhani, M. Hosseinkhani, S. Boutry, A. Simchi, W. S. Journeay, K. Subramani, S. Laurent. Magnetic Resonance Imaging Tracking of Stem Cells in Vivo Using Iron Oxide Nanoparticles as a Tool for the Advancement of Clinical Regenerative Medicine. Chemical Reviews, 111, 253-280 (2011).
117. H. Hosseinkhani. Special Issue On Nanomedicine. International Journal of Nanotechnology, 8, 615-617 (2011).
118. H. Hosseinkhani, M. Hosseinkhani, Y.R. Chen, K. Subramani, A.J. Domb. Innovative technology of engineering magnetic DNA nanoparticles for gene therapy. International Journal of Nanotechnology, 8, 724-735 (2011).
119. M. Hosseinkhani, H. Hosseinkhani, Y.R. Chen, K. Subramani. In vitro physicochemical evaluation of DNA nanoparticles. International Journal of Nanotechnology, 8, 736-748 (2011).
120. Abedini, H. Hosseinkhani, M. Ismail, Y.R. Chen, A.R. Omar, C. Pei Pei, A.J. Domb. In vitro intracellular trafficking of biodegradable nanoparticles of dextran-spermine in cancer cell lines. International Journal of Nanotechnology, 8, 712-723 (2011).
121. R.S. Sarabi, E. Sadeghi, H. Hosseinkhani, M. Mahmoudi, M. Kalantari, M. Adeli. Polyrotaxane Capped Quantum Dots as New Candidates for Cancer Diagnosis and Therapy. Journal of Nanostructured Polymers and Nanocomposites, 7, 18-31 (2011).
122. K. Subramani, R. Mathew, H. Hosseinkhani, M. Hosseinkhani. Bone regeneration around dental implants as a treatment for peri-implantitis: A review of the literature. Journal of Biomimetics, Biomaterials & Tissue Engineering, 11, 21-33 (2011).
123. H.R. Kalhor, F. Shahin, M.H. Fouani, H. Hosseinkhani. Self-Assembly of Tissue Transglutaminase into Amyloid-Like Fibrils Using Physiological Concentration of Ca2+. Langmuir, 27, 10766-10784 (2011).
124. Abedini, M. Ismail, H. Hosseinkhani, T.I. Azmi, A.R. Omar, C. Pei Pei, M.H. Bejo, A.J. Domb. Effects of CXCR4 siRNAs/dextran-spermine nanoparticles on CXCR4 expression and serum LDH levels in a mouse model of colorectal cancer metastasis to the liver. Cancer Management and Research, 3, 301-309 (2011).
125. Hosseinkhani, M. Hosseinkhani, S. Hattori, R. Matsuoka, N. Kawaguchi. Micro and nanoscale in vitro 3D culture system for cardiac stem cells. Journal of Biomedical Materials Research Part A, 94, 1-8 (2010).
126. S. Mohageri, H. Hosseinkhani, N.G. Ebrahimi, M. Solimani, A.M. Kajbafzadeh. Proliferation and differentiation of mesenchymal stem cell on collagen sponge reinforced with polypropylene/polyethylene terephathalate blend fibers. Tissue Engineering Part A, 16, 3821-3830 (2010).
127. S. Lindstrom, A. Iles, J. Persson, H. Hosseinkhani, M. Hosseinkhani, A. Khademhosseini, H. Lindstrom, H. Andersson. Nanoporous Titania Coating of Microwell Chips for Stem Cell Culture and Analysis. Journal of Biomechanical Science and Engineering, 5, 272-279 (2010).
128. S. Abdullah, W.Y. Yeo, H. Hosseinkhani, M. Hosseinkhani, E. Masrawa, R. Ramasamy, R. Rosli, S.A. Rahman, A.J. Domb. Gene Transfer into the Lung by Nanoparticle Dextran-Spermine/Plasmid DNA Complexes. BioMed Research International, 2010, 1-10 (2010).
129. F. Abedini, M. Ismail, H. Hosseinkhani, T. Azmi, A. Omarb, C. PeiPei, N. Ismail, I.Y. Farber, A.J. Domb. Toxicity evaluation of dextran-spermine polycation as a tool for gene therapy in vitro. Journal of Cell and Animal Biology, 4, 170-176 (2010).
130. R Amini, R Rosli, S Abdullah, H Hosseinkhani, A Veerakumarasivam. Delivery of Plasmid Expressing Green Fluorescent Protein by PEGylated Dextran-Spermine to Acute Myeloid Leukemic Cells. Myeloid Leukemia, 65, (2010).
131. K. Subramani, H. Hosseinkhani, A. Khraisat, M. Hosseinkhani, Y. Pathak. Targeting nanoparticles as drug delivery systems for cancer treatment. Current Nanoscience, 5, 134-140 (2009).
132. Hosseinkhani, M. Hosseinkhani. Biodegradable polymer-metal complexes for gene and drug delivery. Current Drug Safety, 4, 79-83 (2009).
133. H. Hosseinkhani, M. Hosseinkhani, E. Vasheghani, M. Nekoomanesh. In vitro sustained release and degradation study of biodegradable poly (D,L-lactic acid) microspheres loading theophylline. Advanced Science Letters, 2, 70-77 (2009).
134. H. Hosseinkhani, M. Hosseinkhani, A. Khademhosseini, N. P. Gabrielson, D.W. Pack, H. Kobayashi. DNA nanoparticles encapsulated in 3-D tissue engineered scaffold enhance osteogenic differentiation of mesenchymal stem cells. Journal of Biomedical Materials Research Part A, 85, 47-60 (2008).
135. F. Tian, H. Hosseinkhani, M. Hosseinkhani, A. Khademhosseini, Y. Yokoyama, G. Estrada, H. Kobayashi. Quantitative analytical of cell adhesion on aligned micro- and nanofibers. Journal of Biomedical Materials Research Part A, 84, 291-299 (2008).
136. H. Hosseinkhani, M. Hosseinkhani. Suppression effect of basic fibroblast growth factor on mesenchymal stem cell proliferation activity; Part I: Release characteristics. Chemistry Today, 26, 30-32 (2008).
137. H. Hosseinkhani, M. Hosseinkhani. Suppression effect of basic fibroblast growth factor on mesenchymal stem cell proliferation activity; Part II: Biological characteristics. Chemistry Today, 26, 35-37 (2008).
138. H. Hosseinkhani, M. Hosseinkhani, F. Tian, H. Kobayashi, Y. Tabata. Bone regeneration on a collagen sponge-self assembled peptide-amphiphile nanofibers hybrid scaffold. Tissue Engineering, 13, 1-9 (2007).
139. H. Hosseinkhani, M. Hosseinkhani, A. Khademhosseini, H. Kobayashi. Bone regeneration through controlled release of bone morphogenetic protein-2 from 3-D tissue engineered nano-scaffold. Journal of Controlled Release, 117, 380-386 (2007).
140. M. Hosseinkhani, H. Hosseinkhani, A. Khademhosseini, F. Bolland, H. Kobayashi, S. Prat. Bone morphogenetic protein-4 enhances cardiomyocytes differentiation of cynomolgus monkey ES cells in Knockout Serum Replacement medium. Stem Cells, 25, 571-580 (2007).
141. T. Furong, H. Hosseinkhani, G. Estrada, H. Kobayashi. Quantitative method for the analysis of cell attachment using the aligned scaffold structure. Journal of Physics, 61, 587-590 (2007).
142. H. Hosseinkhani, M. Yamamoto, Y. Inatsugu, Y. Hiraoka, S. Inoue, H. Shimokawa, Y. Tabata. Enhanced ectopic bone formation using combination of impregnation of plasmid DNA into 3-D scaffold and bioreactor perfusion culture. Biomaterials, 27, 1387-1398 (2006).
143. H. Hosseinkhani, M. Hosseinkhani, F. Tian, H. Kobayashi, Y. Tabata. Osteogenic differentiation of mesenchymal stem cells in self assembled-peptide amphiphile nanofibers. Biomaterials, 27, 4079-4086 (2006).
144. H. Hosseinkhani, T. Azzam, H. Kobayashi, Y. Hiraoka, H. Shimokawa, A.J. Domb, Y. Tabata. Combination of 3-D tissue engineered scaffold and non-viral gene carrier enhance in vitro DNA expression of mesenchymal stem cells. Biomaterials, 27, 4269-4278 (2006).
145. H. Hosseinkhani, M. Hosseinkhani, F. Tian, H. Kobayashi, Y. Tabata. Ectopic bone formation in collagen sponge-self assembled peptide amphiphile nanofibers hybrid scaffold in a perfusion culture bioreactor. Biomaterials, 27, 5089-5098 (2006).
146. H. Hosseinkhani, M. Hosseinkhani, A. Khademhosseini, H. Kobayashi, Y. Tabata. Enhanced angiogenesis through controlled release of basic fibroblast growth factor from peptide amphiphile for tissue regeneration. Biomaterials, 27, 5836-5844 (2006).
147. H. Hosseinkhani, M. Hosseinkhani, H. Kobayashi, "Proliferation and differentiation of mesenchymal stem cells by using self assembly of peptide-amphiphile nanofibers. Biomedical Materials, 1, 8-15 (2006).
148. H. Hosseinkhani. DNA nanoparticles for gene delivery to cells and tissue. International Journal of Nanotechnology, 3, 416-461 (2006).
149. H. Hosseinkhani, Y. Tabata. Self assembly of DNA nanoparticles with polycations for the delivery of genetic materials into cells. Journal of Nanoscience and Nanotechnology, 6, 2320-2328 (2006).
150. H. Hosseinkhani, M. Hosseinkhani, H. Kobayashi. Design of tissue engineered nanoscaffold through self assembly of peptide amphiphile. Journal of Bioactive and Compatible Polymers, 21, 277-296 (2006).
151. H. Hosseinkhani, T. Kushibiki, K. Matsumoto, T. Nakamura, Y. Tabata. Enhanced suppression of tumor growth using a combination of NK4 plasmid DNA-PEG engrafted cationized dextran complex and ultrasound. Cancer Gene Therapy, 13, 479-489 (2006).
152. H. Hosseinkhani, M. Hosseinkhani, A. Khademhosseini. Emerging Applications of Hydrogels and Microscale Technologies in Drug Discovery. Drug Discovery, 1, 32-34 (2006).
153. H. Hosseinkhani, M. Hosseinkhani, A. Khademhosseini. Tissue regeneration through self-assembled peptide amphiphile nanofibers. Yakhte Medical Journal, 8, 204-209 (2006).
154. H. Hosseinkhani, H. Kobayashi, Y. Tabata. Design of tissue-engineered nano-scaffold using peptide-amphiphile for regenerative medicine. Peptide Science, 2005, 341-344 (2006).
155. H. Hosseinkhani, H. Kobayashi, Y. Tabata. Selective differentiation cardiomyocyte cells by using peptide-amphiphile nanofibers. Peptide Science, 2005, 63-66 (2006).
156. M. Konishi, Y. Tabata, M. Kariya, H. Hosseinkhani, A. Suzuki, K. Fukuhara, M. Mandai, K. Takakura, S. Fujii. In vivo anti-tumor effect of dual release of cisplatin and adriamycin from biodegradable gelatin hydrogel. Journal of Controlled Release, 103, 7-19 (2005).
157. H. Hosseinkhani, Y. Tabata. Ultrasound enhances in vivo tumor expression of plasmid DNA by PEG-introduced cationized dextran. Journal of Controlled Release, 108, 540-556 (2005).
158. H. Hosseinkhani, Y. Inatsugu, Y. Hiraoka, S. Inoue, H. Shimokawa, Y. Tabata. Impregnation of plasmid DNA into 3-D scaffold and medium perfusion enhance in vitro DNA expression of mesenchymal stem cells. Tissue Engineering, 11, 1459-1475 (2005).
159. H. Hosseinkhani, Y. Inatsugu, Y. Hiraoka, S. Inoue, Y. Tabata. Perfusion culture enhances osteogenic differentiation of rat mesenchymal stem cells in collagen sponge reinforced with poly (glycolic acid) fiber. Tissue Engineering, 11, 1476-1488 (2005).
160. H. Hosseinkhani, T. Azzam, Y. Tabata, A.J. Domb. Dextran-spermine polycation: an efficient non-viral vector for in vitro and in vivo gene transfection. Gene Therapy, 11, 194-203 (2004).
161. H. Hosseinkhani, Y. Tabata. PEGylation enhances tumor targeting of plasmid DNA by an artificial cationized protein with repeated RGD sequences, Pronectin®. Journal of Controlled Release, 97, 157-171 (2004).
162. H. Hosseinkhani, Y. Tabata. In vitro gene expression by cationized derivatives of an artificial protein with repeated RGD sequences, Pronectin®. Journal of Controlled Release, 86, 169-182 (2003).
163. H. Hosseinkhani, T. Aoyama, O. Ogawa, Y. Tabata. Ultrasound enhances the transfection of plasmid DNA by non-viral vector. Current Pharmaceutical Biotechnology, 4, 109-122 (2003).
164. H. Hosseinkhani, T. Aoyama, O. Ogawa, Y. Tabata. Tumor targeting of gene expression by dextran conjugation based on metal coordination. Journal of Controlled Release, 88, 297-312 (2003).
165. T. Aoyama, H. Hosseinkhani, S. Yamamoto, O. Ogawa, Y. Tabata. Enhanced expression of plasmid DNA-cationized gelatin complex by ultrasound in murine muscle. Journal of Controlled Release, 80, 345-356 (2002).
166. H. Hosseinkhani, T. Aoyama, O. Ogawa, Y. Tabata. Ultrasound enhancement of in vitro transfection of plasmid DNA by a cationized gelatin. Journal of Drug Targeting, 10, 193-204 (2002).
167. H. Hosseinkhani, T. Aoyama, O. Ogawa, Y. Tabata. In vitro transfection of plasmid DNA by amine derivatives of gelatin accompanied with ultrasound irradiation. Pharmaceutical Research, 19, 1469-1477 (2002).
168. H. Hosseinkhani, T. Aoyama, O. Ogawa, Y. Tabata. Liver targeting of plasmid DNA by pullulan conjugation based on metal coordination. Journal of Controlled Release, 83, 287-302 (2002).
169. H. Hosseinkhani, T. Aoyama, O. Ogawa, Y. Tabata. In vitro transfection of plasmid DNA by different-cationized gelatin with or without ultrasound irradiation. Proceedings of Japan Academic Ser. B, 77, 161-166 (2001).
170. Jain, H. Hosseinkhani, A.J. Domb, W. Khan. Cationic Polymerscationic polymers for the Delivery of Therapeutic Nucleotides. Polysaccharides, 1-19 (2014), Springer International Publishing.
171. M. Hosseinkhani, D. Mehrabani, M. H. Karimfar, S. Bakhtiyari, A. Manafi, R. Shirazi. Tissue engineered scaffolds in regenerative medicine. World J Plast Surg. 3, 3-7 (2014).
172. M. Hosseinkhani, R. Shirazi, F. Rajaei, M. Mahmoudi, N. Mohammadi, M. Abbasi. Engineering of the embryonic and adult stem cell niches. Iranian Red Crescent Medical Journal, 15 (2), 83 (2013).
173. F. Hajmanoochehri, N. Mohammadi, N. Nasirian, M. Hosseinkhani. Patho-epidemiological features of esophageal and gastric cancers in an endemic region: a 20-year retrospective study. Asian Pac J Cancer Prev. 14 (6), 3491-7 (2013).
174. H. Hosseinkhani. Innovation Technology to Engineer 3D Living Organs as Intelligent Diagnostic Tools. In Book “Characterization and Development of Biosystems and Biomaterials”, 183-192, Springer Berlin Heidelberg Publisher (2013).
175. H. Hosseinkhani, M. Hosseinkhani, K. Subramani. Bone Regeneration using self-assembled nanoparticles-based scaffolds", In “Emerging Nanotechnologies in Dentistry”, Elsevier, UK (2012).
176. M Mahmoudi, S Laurent, MA Shokrgozar, M Hosseinkhani. Toxicity evaluations of superparamagnetic iron oxide nanoparticles: cell “vision” versus physicochemical properties of nanoparticles. ACS nano 5 (9), 7263-7276 (2011).
177. S. Abdullah, W.Y. Yeo, H. Hosseinkhani, M. Hosseinkhani, E. Masrawa, R. Ramasamy, R. Rosli, S.A. Rahman, A.J. Domb. Gene Transfer into the Lung by Nanoparticle Dextran-Spermine/Plasmid DNA Complexes. Journal of Biomedicine and Biotechnology, 2010, 1-10 (2010).
178. P. Parikh, Y. Hao, M. Hosseinkhani, S. B. Patil, G. W. Huntley, M. Tessier-Lavigne, H. Zou. Regeneration of axons in injured spinal cord by activation of bone morphogenetic protein/Smad1 signaling pathway in adult neurons. Proceedings of the National Academy of Sciences. 108, E99-E107 (2011).
179. Balbarini, A. Magera, M. C. Barsotti, H. Hosseinkhani, F. Chiellini, R. Solaro, R. Di Stefano. SELF ASSEMBLING PEPTIDE AMPHIPHILE NANOFIBERS AS A SCAFFOLD FOR ENDOTHELIAL PROGENITOR CELLS. Journal of the American College of Cardiology, 55, E1652 (2010).
180. R Di Stefano, MC Barsotti, A Magera, H Hosseinkhani, F Chiellini, D Dinucci, M Alderighi, R Solaro, A Balbarini. A biological self assembling amphiphilic peptide enhances Endothelial Progenitor Cells growth and paracrine release. EUROPEAN HEART JOURNAL, 30, 177 (2009).
181. H. Hosseinkhani, M. Hosseinkhani. Design of 3D Culture Systems To Enhance In Vitro Gene Expression of Mesenchymal Stem Cells. MOLECULAR THERAPY, 17, S270-S270 (2009).
182. H. Hosseinkhani, M. Hosseinkhani. Tissue engineered Scaffolds for stem cells and regenerative medicine, In Trends in Stem Cell Biology and Technology, Humana Press, 367-387 (2009).
183. H. Hosseinkhani, M. Hosseinkhani, A. Khademhosseini. Emerging technology of hydrogels in drug discovery, Topics in Multifunctional Biomaterials and Devices (2008).
184. H. Hosseinkhani, M. Hosseinkhani, A. Khademhosseini. A New Injectable Tissue Engineered Scaffold Induces Angiogenesis. The 2007 Annual Meeting (2007).
185. Khademhosseini M. Hosseinkhani, H. Hosseinkhani. Post-translational modification of GATA-4 involved in the differentiation of monkey ES cell into cardiac myocytes. Circulation, 16, 202-203 (2007).
186. Hossein Hosseinkhani Mohsen Hosseinkhani. Bone morphogenetic protein-4 enhances cardiomyocyte differentiation of cynomolgus monkey ES cells in Knockout Serum Replacement medium. EUROPEAN HEART JOURNAL, 28, 230-231 (2007).
187. M. Hosseinkhani, K. Hasegawa, K. Ono, T. Kawamura, T. Takaya, T. Morimoto, H. Wada, A. Shimatsu, S. Gonzalez Prat, H. Suemori, N. Nakatsuji, T. Kita. Trichostatin A induces myocardial differentiation of monkey ES cells. Biochemical and biophysical research communications, 356, 386-391 (2007).
188. F Tian, H Hosseinkhani, GG Estrada, H Kobayashi. Quantitative method for the analysis of cell attachment using aligned scaffold structures. Journal of Physics: Conference Series, 61, 587 (2007).
189. M Hosseinkhani, S Prat, K Hasegawa. Synergistic enhancement of myocardial cell differentiation of cynomolgus monkey ES cells by trichostatin A and gelatin. EUROPEAN HEART JOURNAL, 27, 550-551 (2006).
190. H Hosseinkhani, M Hosseinkhani, H Kobayashi. A new injectable tissue engineered scaffold for regenerative medicine. Microtechnologies in Medicine and Biology, 10-11 (2006).
191. H Hosseinkhani, H Kobayashi, Y Tabata. Design of a nano-vessel-like network for controlled proliferation and differentiation of mesenchymal stem cells for regenerative medicine. TISSUE ENGINEERING, 12, 993-994 (2006).
192. H Hosseinkhani, T Aoyama, O Ogawa, Yasuhiko Tabata. Tumor targeting of plasmid DNA by dextran conjugation based on metal coordination. Key Engineering Materials, 288, 109-112 (2005).
193. H Hosseinkhani, T Aoyama, O Ogawa, Y Tabata. II Controlled Release Systems-Tumor Targeting of Plasmid DNA by Dextran Conjugation Based on Metal Coordination, Key Engineering Materials, 288289, 109-112 (2005).
194. K Kunath, D Fischer von Harpe, P Lampela, PT Mannisto, SP Schwendeman, S Oe, YY Yang, SM Moochhala, CA Redwood City, SL Tao, MW Lubeley, TA Desai, S Takada, T Akimoto, AR Denet, N Passerini, C Padula, PL Catellani, O Pillai, H Hosseinkhani, S Noguchi, NJ Meilander, MK Pasumarthy, TH Kowalczyk, MJ Cooper, RV Bellamkonda. Gene delivery, Journal of Controlled Release, 88, 459-461 (2003).
195. H. Hosseinkhani, Design of Non-Viral Polymer Vectors and the Ultrasound Combination to Enhance Gene Transfection. Kyoto University (2002).
196. E Vasheghani-Farahani, H Hosseinkhani, M Nekomanesh. Effect of preparation conditions on theophylline release from biodegradable poly (DL-lactic acid) microspheres. JOURNAL OF CONTROLLED RELEASE, 72, 287-291 (2001).
197. H. Hosseinkhani, M. Hosseinkhani, S. Zhang, K. Subramani. Self assembly of nanomaterials for engineering cell microenvironment", In “Micro and Nanoenginernig of the cell microenvironment: Applications and Technologies” Artech House Publishers, USA (2008).
198. H. Hosseinkhani. Innovation Technology to Engineer 3D Living Organs as Intelligent Diagnostic Tools, In “Characterization and Development of Biosystems and Biomaterials”, Springer Publication, (2012).
199. H. Hosseinkhani. Controlled release systems for bone regeneration, In “Polymeric Biomaterials, Third Edition, Volume II: Medicinal and Pharmaceutical Applications of Polymers and Technology”, CRC Press/Taylor and Francis, USA (2012).
200. H. Hosseinkhani, M. Hosseinkhani, K. Subramani. Bone Regeneration using self-assembled nanoparticles-based scaffolds, In “Emerging Nanotechnologies in Dentistry”, Elsevier, UK (2012).
201. H. Hosseinkhani, M. Hosseinkhani. Tissue Engineered Scaffolds for Stem Cells and Regenerative Medicine, In “Trend in Stem Cells Biology and Technology”, HUMANANA Press Inc., USA (2009)
202. H. Hosseinkhani, M. Hosseinkhani, A. Khademhosseini. Emerging Technology of Hydrogels in Drug Discovery, In “Topics in Multifunctional Biomaterials and Devices” London, UK (2007).
203. H. Hosseinkhani, T. Aoyama, O. Ogawa, Y. Tabata, "Tumor targeting of plasmid DNA by dextran conjugation based on metal coordination", In Key Engineering Materials, Vols. 288-289, pp 109-112, Trans Tech Publications, Switzerland (2005).

無法下載圖示 全文公開日期 2020/07/17 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE