簡易檢索 / 詳目顯示

研究生: 紀順得
Shuen-te Ji
論文名稱: 分時多工被動光纖網路的新型監控系統
Novel Fault Monitoring Scheme for TDM-PON Systems
指導教授: 李三良
San-Liang Lee
口試委員: 吳靜雄
Jing-Shown Wu
徐世祥
Shih-Hsiang Hsu
楊淳良
Chun-Liang Yang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 99
中文關鍵詞: 被動光纖網路光時域分析儀光頻域分析儀干涉析光器斷線監控
外文關鍵詞: PON, OTDR, OFDR, interference, etalon, fault monitoring
相關次數: 點閱:182下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

光纖被動網路已經被視為是下一代的接取網路解決方案,但是由於光纖被動網路採用的是樹枝狀架構,因此傳統用於斷線分析的光時域分析儀並不適用在這個架構上。雖然已經有人提出以光纖光柵搭配波長可調式光源的解決方案,但是這個方案並不符合成本效益,並且無法導入大量生產。因此本論文主要在設計低成本的新型光網路監控系統,此監控方式適用在樹枝狀結構的分時多工被動網路,我們在中央機房發送一個波長調變光源,而用來監控之特殊反射式干涉元件則放置在用戶端,由機房端發送的波長調變光源透過光纖網路傳遞並在用戶端經過干涉後,元件會產生特定頻率的時域訊號,此訊號接著反射回中央機房,由於各用戶端的干涉元件所產生的訊號週期不同,因此所有干涉訊號可以透過簡單的計算反射訊號在頻譜上的強弱來判斷中央機房到用戶端的光纖網路是否出現狀況。
此架構使用的干涉元件具有容易大量製造以及積體化的優點,非常容易和現存的元件整合在一起。在本論文中將討論此種監控方式相較於光時域反射儀以及光頻域反射儀的優缺點,以及在用戶端使用的干涉元件,在採用不同類型干涉元件下的效果比較,並且討論此種監控方式使用在樹狀結構的分時多工系統下,接收器需要的靈敏度,以及合適的電路設計方式。


Passive optical networks (PONs) are becoming the popular solutions for access networks due to the advantages of low cost, large capacity, and easy maintenance. For enhancing the survivability, the PON system must have fault detection capability. Because a PON system has a point-to-multipoint topology, the backscattered signals from the distribution fibers overlap together, making the fault detection difficult by using the conventional optical time domain reflectometer (OTDR). To monitor the failure of distribution fibers, a tunable light source at the central office (CO) and a fiber Bragg grating (FBG) at each optical network unit (ONU) was demonstrated. However, this monitoring system is not cost-effective because of the use of OSA, and FBGs. The FBG is difficult to be mass produced or integrated with other active and passive components in order to further reduce the cost of ONUs.
Therefore, we propose a new monitoring scheme that employs a continuous wavelength sweeper at the CO and an interferometric (IF) device at each ONU. The CO send a frequency-modulation signal and then the IF devices reflect the interference signal to the CO. The reflected signal from each ONU can easily be distinguished from the others by performing a Fourier transform. The corresponding spectral component will disappear if one of the distribution fiber is broken. This scheme provides versatility for fault monitoring by using low-cost and mass-producible components. We will discuss the performance by using different IF device at ONUs. The effect of sweeper light source, the design of the receiver circuit, and the sensitivity and linearity of this monitoring system will be investigated in detailed. Also, we discuss the advantages and drawbacks between the proposed monitoring scheme and the OTDR and optical frequency domain reflectometer (OFDR) schemes.

摘要 I ABSTRACT II 誌謝 III 圖目錄 VII 表目錄 XI 第一章 簡介 1 1-1 前言 1 1-2 光網路系統的維護 2 1-3 研究動機 3 1-4 論文架構 4 第二章 被動光纖網路及監控方法 6 2-1 前言 6 2-2 光纖到府技術簡介 6 2-2-1光纖到府技術架構 10 2-2-2 被動光纖網路的多工技術 15 2-2-3被動光纖網路的差異 19 2-2-4 接取網路的未來趨勢 21 2-3光時域反射儀介紹 23 2-3-1光時域反射儀的運作原理 24 2-3-2 OTDR的效能參數 31 2-3-3效能參數的取捨 33 2-4光頻域反射儀介紹 34 2-4-1光頻域反射儀的運作原理 35 2-4-2同調長度的影響 38 2-5相關監控技術介紹 39 第三章 適用在分時多工被動網路的新型監控系統介紹與模擬 41 3-1 前言 41 3-2 麻克-真德干涉計(MACH-ZEHNDER INTERFEROMETER)介紹 42 3-3 析光器(ETALON)介紹 46 3-4 新型架構簡介 52 3-5 可調式光源的探討 62 第四章 新型監控系統的實際量測 65 4-1 前言 65 4-2 光源的架構 65 4-3 干涉元件特性的量測 69 4-3-1 麻克-真德干涉計的特性量測 71 4-3-2 析光器的特性量測 73 4-3-3法布里-珀羅雷射實際量測 75 4-4 接收電路設計 77 4-5 靈敏度與動態範圍 80 4-6 三個用戶端的監控情況 86 4-7 多條分佈光纖發生彎曲損失的情形 89 第五章 結論 93 5-1 總結 93 5-2 未來研究方向 94 參考文獻 96 作者簡介 99

[1] J. Georage, “FTTH design with future in mind,” Digest FTTH Conf., Las Vegas, NV, Oct. 2005, Session 7D.
[2] T. Koonen, “Fiber to the Home/Fiber to the Premises: What, Where, and When?” IEEE Proceedings, vol. 94, no. 5, pp. 911-934, May 2006.
[3] G. keiser, FTTX concepts and applications, WILEY-INTERSCIENCE, 2006.
[4] C. H. Lee, W. V. Sorin, and B. Y. Kim, “Fiber to the Home Using a PON Infrastructure,” J. Lightwave Technol., vol. 24, no. 12, pp. 4568-4582, Dec. 2006.
[5] D. Law. (2006, Oct.). IEEE 802.3 CSMA/CD (ETHERNET). [Online]. Available: http://www.ieee802.org/3/.
[6] FSAN in Relation to Other Standard Bodies. FSAN. [Online]. Available: http://www.fsanweb.org/relation.asp.
[7] 馬秀莉, 張志朋, 楊淑雯, 寬帶無源光網絡的類型與比較, 深圳大學學報, vol. 20, no.1, 2003.
[8] S. Nishihara, M. Nakamura, K. Nishimura, K. Kishine, S. Kimura, and K. Kato, “A Fast-Response and High-Sensitivity PIN-TIA Module with Wide Dynamic Range for 10G Burst-Mode Transmissions,” ECOC 2007, Berlin, Germany, Sept. 2007.
[9] H. Ichibangase, and J. Nakagawa, “A 10.3 Gbit/s LAN-PHY based Burst-mode Transmitter with a fast 6 ns turn-on/off time for 10 Gbps-based PON Systems,” OFC 2008, paper OWL4, San Diego, California, USA, Feb. 2008.
[10] J. Nakagawa, “Key technologies of GE-PON burst-mode receivers and future PON systems,” OFC 2006, paper OWS3, Anaheim, USA, Mar. 2006.
[11] S. Nishihara, S. Kimura, T. Yoshida, M. Nakamura, J. Terada, K. Nishimura, K. Kishine, K. Kato, Y. Ohtomo, N. Yoshimoto, T. Imai, and M. Tsubokawa, “A Burst-Mode 3R Receiver for 10-Gbit/s PON Systems With High Sensitivity, Wide Dynamic Range, and Fast Response,” J. Lightwave Tech., vol. 26, no. 1, pp. 99-107, Jan. 2008.
[12] A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review [Invited],” J. Opt. Netw., vol. 4, no. 11, pp. 737-758, Nov. 2005.
[13] 鄭俊宏, 新型動態波長配置保護方法與低成本光網路監控系統, 碩士論文, 台灣科技大學, 民國96年
[14] 通信世界網, GPON與EPON技術及產品比較, www.cww.net.cn, Nov. 2004.
[15] N. Genay, P. Chanclou, F. Saliou, Q. Liu, T. Soret, and L. Guillo, “Solutions for Budget Increase for the Next Generation Optical Access Network,” ICTON 2007, Tu.A4.7, Sousse, pp. 317-320, Dec. 2007.
[16] M. Hajduczenia, P. R. M. Incio, H. J. A. da Silva, M. M. Freire, and P. P. Monteiro, “10G EPON Standardization in IEEE 802.3av Project,” OFC 2008, paper NMD4, San Diego, California, USA, Feb. 2008.
[17] R. L. Jr, A. McCurdy, and Y. Sun, “Challenges and Solutions for 10 Gbps PON,” OFC 2008, paper NMD3, San Diego, California, USA, Feb. 2008.
[18] J, Cho, J. Kim, D. Gutierrez, and L. G. Kazovsky, “Broadcast Transmission in WDM-PON using a Broadband Light Source,” OFC 2007, paper OWS7, Anaheim, California, USA, Mar. 2007.
[19] 張郁堂, 改良式交叉增益調變波長轉換應用於分波多工被動光學網路之新型廣播次系統, 碩士論文, 台灣科技大學, 民國96年
[20] G. Contestabile, and N. Calabretta, “Double-Stage Cross-Gain Modulation in SOAs: An Effective Technique for WDM Multicasting,” IEEE Photon. Technol. Lett., vol. 18, no. 1, pp. 181-183, Jan. 2006.
[21] J. Cho, J. Kim, D. Gutierrez, and L. G. Kazovsky, “Broadcast Transmission in WDM-PON using a Broadband Light Source,” OFC 2007, paper OWS7, Anaheim, California, USA, Mar. 2007.
[22] S. D. Personick, “Photon probe - An optical fiber time domain reflectometer,” Bell Syst. Tech. J., vol. 56, pp. 355-366, Mar. 1977.
[23] M. K. Barnoski, M. D. Rourke, S. M. Jensen, and R. T. Melville, “Optical time domain reflectometer,” Appl. Opt., vol. 16, pp. 2375-2379, Sept. 1977.
[24] D. Derickson, Fiber Optic Test and Measurement, New Jersey: Prentice Hall PTR, 1998, Ch 11.
[25] D. R. Anderson, Troubleshooting Optical -Fiber Networks - Understanding and Using Optical Time-Domain Reflectometer, 2nd ED, Academic Press, 2004.
[26] B. Culshaw and I. P. Giles, “Frequency modulated heterodyne optical Sagnac interferometer,” IEEE J. Quantum Electron., vol. 18, no. 4, pp. 690-693, Apr. 1982.
[27] J. Zheng, “Analysis of optical frequency-modulated continuous-wave interference,” Appl. Opt., vol. 43, no. 21, pp. 4189-4198, Jul. 2004.
[28] D. Derickson, Fiber Optic Test and Measurement, New Jersey: Prentice Hall PTR, 1998, Ch 10.
[29] W. V. Sorin, D. K. Donald, S. A. Newton, and M. Nazarathy, “CoherentFMCW reflectometry using a temperature tuned Nd:YAG ring laser,” IEEE Photon. Technol. Lett., vol. 2, no. 12, pp. 902-904, Dec. 1993.
[30] S. P. Bush, A. Gungor, and C. C. Davis, “Studies of the coherence properties of a diode-pump Nd:YAG ring laser,” Appl. Phys. Lett., vol. 53, no. 8, pp. 646-647, Aug. 1988.
[31] C. J. Karlsson, and F. A. Olsson, “Linearization of the frequency sweep of a frequency-modulated continuous-wave semiconductor laser radar and the resulting ranging performance,” Appl. Opt., vol. 38, no. 15, pp. 3376-3386, May 1999.
[32] C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, “Low noise narrow linewidth fiber laser at 1550 nm,” J. Lightwave Technol., vol. 22, no. 1, pp. 57-62, Jan. 2004.
[33] S. Agger, J. H. Povlsen, and P. Varming, “Single-frequency thuliumdoped distributed feedback fiber laser,” Opt. Lett., vol. 29, no. 13, pp. 1503-1505, Jul. 2004.
[34] P. Oberson, B. Hutter, O. Guinnard, G. Ribordy, and N. Gisin, “Optical frequency domain reflectometry with a narrow linewidth fiber laser,” IEEE Photon. Technol. Lett., vol. 12, no. 7, pp. 867-869, Jul. 2000.
[35] J. Geng, C. Spiegelberg, and S. Jiang, “Narrow Linewidth Fiber Laser for 100-km Optical Frequency Domain Reflectometry,” IEEE Photon. Technol. Lett., vol. 17, no. 9, pp. 1827-1829, Step. 2005.
[36] I. Sankawa, S. Furukawa, Y. Koyamada, and H. Izumita, “Fault location technique for in-service branched optical fiber networks,” IEEE Photon. Technol. Lett., vol. 2, no. 10, pp. 766-768, Oct. 1990.
[37] C. K. Chan, F. Tong, L. K. Chen, K. P. Ho, and D. Lam, “Fiber-fault identification for branched access networks using a wavelength-sweeping monitoring source,” IEEE Photon. Technol. Lett., vol. 11, no. 5, pp. 614-616, May 1999.
[38] C. K. Chan, F. Tong, L. K. Chen, J. Song, and D. Lam, “A practical passive surveillance scheme for optically amplified passive branched optical networks,” IEEE Photon. Technol. Lett., vol. 9, no. 4, pp. 526-528, Apr. 1997.
[39] C. J. Hsu, W. J. Ho, N. L. Wu, C. C. Lin, H. H. Lu, and C. H. Wu, “WDM-PON Fiber Fault Detection Technology Study By Using Ghost Characteristic of OTDR,” OPT 2006, BO-39, Dec. 2006.
[40] K. Chan, C. K. Chan, F. Tong, and L. K. Chen, “A novel FFT-based EDFA supervisory scheme for WDM transmission systems,” ECOC 01, vol.3, pp. 470- 471, Sept. 2001.
[41] M. Born, and E. Wolf, Principles of optics, New York, Pergamon Press Inc, 1980, Ch 7.
[42] K. Iizuka, Elements of photonics, Wiley-Interscience, 2002, Ch3.

QR CODE